

Pandas: Check if all values in column are zeros
source link: https://thispointer.com/pandas-check-if-all-values-in-column-are-zeros/
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

Pandas: Check if all values in column are zeros
This article will discuss checking if all values in a DataFrame column are zero (0) or not.
First of all, we will create a DataFrame from a list of tuples,
import pandas as pd # List of Tuples students = [('jack', 34, 'Sydney', 'Australia', 0), ('Riti', 30, 'Delhi', 'India', 0), ('Vikas', 0, 'Mumbai', 'India', 0), ('Neelu', 0, 'Bangalore','India', 0), ('John', 16, 'New York', 'US', 0), ('Mike', 17, 'las vegas', 'US', 0)] # Create a DataFrame object df = pd.DataFrame( students, columns=['Name', 'Age', 'City', 'Country', 'Budget'], index=['a', 'b', 'c', 'd', 'e', 'f']) # Display the DataFrame print(df)
Output:
Name Age City Country Budget a jack 34 Sydney Australia 0 b Riti 30 Delhi India 0 c Vikas 0 Mumbai India 0 d Neelu 0 Bangalore India 0 e John 16 New York US 0 f Mike 17 las vegas US 0
This DataFrame has six rows and five columns, out of which column ‘Budget’ has all zeros only. Let’s see how we can verify if a column contains only zeros or not in a DataFrame.
Check if a column contains only 0’s in DataFrame
Select the column as a Series object and then compare the series with value 0 and use Series.all() to verify if all values are zero or not in that column. The steps are as follows,
Advertisements

- Select the column by name using subscript operator of DataFrame i.e. df[‘column_name’]. It gives the column contents as a Pandas Series object.
- Compare the Series object with 0. It returns a boolean Series of the same size. Each True value in this boolean Series indicates that the corresponding value in the Original Series (selected column) is zero.
- Check if all values in the boolean Series are True or not. If yes, then it means all values in that column are zero.
For example, let’s check if all values are zero in column ‘Budget’ from the above created DataFrame,
# Check if all values are zero in column 'Budget' if (df['Budget'] == 0).all(): print("All values in the column 'Budget' are Zero") else: print("All values in the column 'Budget' are not Zero")
Output:
All values in the column 'Budget' are Zero
We selected the column and then got a boolean series by comparing it with value 0. Then using the all() function, we checked if all the values in Boolean Series are True or not. If all values are True, then it means that all elements in the column are zero.
In this example, the ‘Budget’ column had 0s only; therefore, the returned boolean Series had all True values, and the Series.all() function returned True in this case. Let’s check out a negative example,
Let’s check if all values are zero in column ‘Age’ in the above created DataFrame,
# Check if all values are zero in column 'Age' if (df['Age'] == 0).all(): print("All values in the column 'Age' are Zero") else: print("All values in the column 'Age' are not Zero")
Output:
All values in the column 'Age' are not Zero
In this example, all values in column ‘Age’ are not zeros only; therefore, the returned boolean Series had some True and few False values, and the Series.all() function returned False in this case. It proved that all elements in column ‘Age’ are not zero.
The complete working example is as follows,
import pandas as pd # List of Tuples students = [('jack', 34, 'Sydney', 'Australia', 0), ('Riti', 30, 'Delhi', 'India', 0), ('Vikas', 0, 'Mumbai', 'India', 0), ('Neelu', 0, 'Bangalore','India', 0), ('John', 16, 'New York', 'US', 0), ('Mike', 17, 'las vegas', 'US', 0)] # Create a DataFrame object df = pd.DataFrame( students, columns=['Name', 'Age', 'City', 'Country', 'Budget'], index=['a', 'b', 'c', 'd', 'e', 'f']) # Display the DataFrame print(df) # Check if all values are zero in column 'Budget' if (df['Budget'] == 0).all(): print("All values in the column 'Budget' are Zero") else: print("All values in the column 'Budget' are not Zero")
Output
Name Age City Country Budget a jack 34 Sydney Australia 0 b Riti 30 Delhi India 0 c Vikas 0 Mumbai India 0 d Neelu 0 Bangalore India 0 e John 16 New York US 0 f Mike 17 las vegas US 0 All values in the column 'Budget' are Zero
Summary
We learned how to check if a DataFrame column contains only zeros.
Pandas Tutorials -Learn Data Analysis with Python
Are you looking to make a career in Data Science with Python?
Data Science is the future, and the future is here now. Data Scientists are now the most sought-after professionals today. To become a good Data Scientist or to make a career switch in Data Science one must possess the right skill set. We have curated a list of Best Professional Certificate in Data Science with Python. These courses will teach you the programming tools for Data Science like Pandas, NumPy, Matplotlib, Seaborn and how to use these libraries to implement Machine learning models.
Checkout the Detailed Review of Best Professional Certificate in Data Science with Python.
Remember, Data Science requires a lot of patience, persistence, and practice. So, start learning today.
Join a LinkedIn Community of Python Developers
Recommend
-
10
Replace NaN Values with Zeros in Pandas DataFrame Last Updated: 03-07-2020 NaN stands for Not A Number and is one of the common ways to represent the missing value in the data. It is a special...
-
10
Create a pandas data frame with the date index and the random values in the column advertisements How do I create a pandas dataframe with da...
-
12
Count Unique Values in a Column – thisPointer.comThis article will discuss different ways to Count unique values in a Dataframe Column in Python. First of all, we will create a sample Dataframe from a list of tuples i.e. ...
-
121
Count number of Zeros in Pandas Dataframe Column This article will discuss how to count the number of zeros in a single or all column of a Pandas Dataframe. Let’s first create a Dataframe from a list of...
-
10
Pandas | Count non-zero values in Dataframe Column This article will discuss how to count the number of non-zero values in one or more Dataframe columns in Pandas. Let’s first create a Dataframe from a...
-
15
Pandas – Count True Values in a Dataframe Column In this article, we will discuss different ways to count True values in a Dataframe Column. First of all, we will create a Dataframe from a list of tuples...
-
14
Pandas – Check if all values in a Column are Equal This article will discuss how to check if all values in a DataFrame Column are the same. First of all, we will create a DataFrame from a list of tuples,
-
10
Check if all values in column are NaN in Pandas This article will discuss checking if all values in a DataFrame column are NaN. First of all, we will create a DataFrame from a list of tuples,
-
7
Replace NaN Values with Zeros in Pandas DataFrameReplace NaN Values with Zeros in Pandas DataFrame10 Views06/06/2022In this video, we are...
-
5
Remap values in Pandas Column with Dictionary In Pandas, A DataFrame is a two-dimensional array. Many times while working with pandas DataFrame, we need to remap the values of a specific column with dicti...
About Joyk
Aggregate valuable and interesting links.
Joyk means Joy of geeK