

自适应负载均衡算法原理与实现
source link: https://my.oschina.net/kevwan/blog/5189618
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

在选择负载均衡算法时,我们希望满足以下要求:
- 具备分区和机房调度亲和性
- 每次选择的节点尽量是负载最低的
- 每次尽可能选择响应最快的节点
- 无需人工干预故障节点
- 当一个节点有故障时,负载均衡算法可以自动隔离该节点
- 当故障节点恢复时,能够自动恢复对该节点的流量分发
基于这些考虑,go-zero
选择了 p2c+EWMA
算法来实现。
算法的核心思想
p2c (Pick Of 2 Choices)
二选一: 在多个节点中随机选择两个节点。
go-zero
中的会随机的选择3次,如果其中一次选择的节点的健康条件满足要求,就中断选择,采用这两个节点。
EWMA (Exponentially Weighted Moving-Average)
指数移动加权平均法: 是指各数值的加权系数随时间呈指数递减,越靠近当前时刻的数值加权系数就越大,体现了最近一段时间内的平均值。
-
-
变量解释:
Vt
: 代表的是第t
次请求的EWMA值
Vt-1
: 代表的是第t-1
次请求的EWMA值
β
: 是一个常量
EWMA 算法的优势
- 相较于普通的计算平均值算法,
EWMA
不需要保存过去所有的数值,计算量显著减少,同时也减小了存储资源。 - 传统的计算平均值算法对网络耗时不敏感, 而
EWMA
可以通过请求频繁来调节β
,进而迅速监控到网络毛刺或更多的体现整体平均值。- 当请求较为频繁时, 说明节点网络负载升高了, 我们想监测到此时节点处理请求的耗时(侧面反映了节点的负载情况), 我们就相应的调小
β
。β
越小,EWMA值
就越接近本次耗时,进而迅速监测到网络毛刺; - 当请求较为不频繁时, 我们就相对的调大
β值
。这样计算出来的EWMA值
越接近平均值
- 当请求较为频繁时, 说明节点网络负载升高了, 我们想监测到此时节点处理请求的耗时(侧面反映了节点的负载情况), 我们就相应的调小
go-zero
采用的是牛顿冷却定律中的衰减函数模型计算 EWMA
算法中的 β
值:
其中 Δt
为两次请求的间隔,e
,k
为常数
gRPC 中实现自定义负载均衡器
-
首先我们需要实现
google.golang.org/grpc/balancer/base/base.go/PickerBuilder
接口, 这个接口是有服务节点更新的时候会调用接口里的Build
方法type PickerBuilder interface { // Build returns a picker that will be used by gRPC to pick a SubConn. Build(info PickerBuildInfo) balancer.Picker }
-
还要实现
google.golang.org/grpc/balancer/balancer.go/Picker
接口。这个接口主要实现负载均衡,挑选一个节点供请求使用type Picker interface { Pick(info PickInfo) (PickResult, error) }
-
最后向负载均衡
map
中注册我们实现的负载均衡器
go-zero 实现负载均衡的主要逻辑
- 在每次节点更新,
gRPC
会调用Build
方法,此时在Build
里实现保存所有的节点信息。 gRPC
在获取节点处理请求时,会调用Pick
方法以获取节点。go-zero
在Pick
方法里实现了p2c
算法,挑选节点,并通过节点的EWMA值
计算负载情况,返回负载低的节点供gRPC
使用。- 在请求结束的时候
gRPC
会调用PickResult.Done
方法,go-zero
在这个方法里实现了本次请求耗时等信息的存储,并计算出了EWMA值
保存了起来,供下次请求时计算负载等情况的使用。
负载均衡代码分析
-
保存服务的所有节点信息
我们需要保存节点处理本次请求的耗时、
EWMA
等信息,go-zero
给每个节点设计了如下结构:type subConn struct { addr resolver.Address conn balancer.SubConn lag uint64 // 用来保存 ewma 值 inflight int64 // 用在保存当前节点正在处理的请求总数 success uint64 // 用来标识一段时间内此连接的健康状态 requests int64 // 用来保存请求总数 last int64 // 用来保存上一次请求耗时, 用于计算 ewma 值 pick int64 // 保存上一次被选中的时间点 }
-
p2cPicker
实现了balancer.Picker
接口,conns
保存了服务的所有节点信息type p2cPicker struct { conns []*subConn // 保存所有节点的信息 r *rand.Rand stamp *syncx.AtomicDuration lock sync.Mutex }
-
gRPC
在节点有更新的时候会调用Build
方法,传入所有节点信息,我们在这里把每个节点信息用subConn
结构保存起来。并归并到一起用p2cPicker
结构保存起来func (b *p2cPickerBuilder) Build(info base.PickerBuildInfo) balancer.Picker { ...... var conns []*subConn for conn, connInfo := range readySCs { conns = append(conns, &subConn{ addr: connInfo.Address, conn: conn, success: initSuccess, }) } return &p2cPicker{ conns: conns, r: rand.New(rand.NewSource(time.Now().UnixNano())), stamp: syncx.NewAtomicDuration(), } }
-
随机挑选节点信息,在这里分了三种情况:
- 只有一个服务节点,此时直接返回供
gRPC
使用即可 - 有两个服务节点,通过
EWMA值
计算负载,并返回负载低的节点返回供gRPC
使用 - 有多个服务节点,此时通过
p2c
算法选出两个节点,比较负载情况,返回负载低的节点供gRPC
使用
主要实现代码如下:
switch len(p.conns) { case 0:// 没有节点,返回错误 return emptyPickResult, balancer.ErrNoSubConnAvailable case 1:// 有一个节点,直接返回这个节点 chosen = p.choose(p.conns[0], nil) case 2:// 有两个节点,计算负载,返回负载低的节点 chosen = p.choose(p.conns[0], p.conns[1]) default:// 有多个节点,p2c 挑选两个节点,比较这两个节点的负载,返回负载低的节点 var node1, node2 *subConn // 3次随机选择两个节点 for i := 0; i < pickTimes; i++ { a := p.r.Intn(len(p.conns)) b := p.r.Intn(len(p.conns) - 1) if b >= a { b++ } node1 = p.conns[a] node2 = p.conns[b] // 如果这次选择的节点达到了健康要求, 就中断选择 if node1.healthy() && node2.healthy() { break } } // 比较两个节点的负载情况,选择负载低的 chosen = p.choose(node1, node2) }
- 只有一个服务节点,此时直接返回供
-
load
计算节点的负载情况上面的
choose
方法会调用load
方法来计算节点负载。计算负载的公式是:
load = ewma * inflight
在这里简单解释下:
ewma
相当于平均请求耗时,inflight
是当前节点正在处理请求的数量,相乘大致计算出了当前节点的网络负载。func (c *subConn) load() int64 { // 通过 EWMA 计算节点的负载情况; 加 1 是为了避免为 0 的情况 lag := int64(math.Sqrt(float64(atomic.LoadUint64(&c.lag) + 1))) load := lag * (atomic.LoadInt64(&c.inflight) + 1) if load == 0 { return penalty } return load }
-
请求结束,更新节点的
EWMA
等信息- 把节点正在处理请求的总数减1
- 保存处理请求结束的时间点,用于计算距离上次节点处理请求的差值,并算出
EWMA
中的β值
- 计算本次请求耗时,并计算出
EWMA值
保存到节点的lag
属性里 - 计算节点的健康状态保存到节点的
success
属性中
func (p *p2cPicker) buildDoneFunc(c *subConn) func(info balancer.DoneInfo) { start := int64(timex.Now()) return func(info balancer.DoneInfo) { // 正在处理的请求数减 1 atomic.AddInt64(&c.inflight, -1) now := timex.Now() // 保存本次请求结束时的时间点,并取出上次请求时的时间点 last := atomic.SwapInt64(&c.last, int64(now)) td := int64(now) - last if td < 0 { td = 0 } // 用牛顿冷却定律中的衰减函数模型计算EWMA算法中的β值 w := math.Exp(float64(-td) / float64(decayTime)) // 保存本次请求的耗时 lag := int64(now) - start if lag < 0 { lag = 0 } olag := atomic.LoadUint64(&c.lag) if olag == 0 { w = 0 } // 计算 EWMA 值 atomic.StoreUint64(&c.lag, uint64(float64(olag)*w+float64(lag)*(1-w))) success := initSuccess if info.Err != nil && !codes.Acceptable(info.Err) { success = 0 } osucc := atomic.LoadUint64(&c.success) atomic.StoreUint64(&c.success, uint64(float64(osucc)*w+float64(success)*(1-w))) stamp := p.stamp.Load() if now-stamp >= logInterval { if p.stamp.CompareAndSwap(stamp, now) { p.logStats() } } } }
https://github.com/tal-tech/go-zero
https://gitee.com/kevwan/go-zero
欢迎使用 go-zero
并 star 支持我们!
微信交流群
关注『微服务实践』公众号并点击 交流群 获取社区群二维码。
Recommend
About Joyk
Aggregate valuable and interesting links.
Joyk means Joy of geeK