4

特征提取与特征选择

 3 years ago
source link: http://lanbing510.info/2014/10/22/Feature-Extraction-Selection.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

特征提取和特征选择都是从原始特征中找出最有效(同类样本的不变性、不同样本的鉴别性、对噪声的鲁棒性)的特征。

区别与联系


特征提取:将原始特征转换为一组具有明显物理意义(Gabor、几何特征[角点、不变量]、纹理[LBP HOG])或者统计意义或核的特征。

特征选择:从特征集合中挑选一组最具统计意义的特征,达到降维。

两者的共同作用:

1 减少数据存储和输入数据带宽;

2 减少冗余;

3 低纬上分类性往往会提高;

4 能发现更有意义的潜在的变量,帮助对数据产生更深入的了解。

线性特征提取


PCA-主成分分析

思想:寻找表示数据分布的最优子空间(降维,可以去相关)。

其实就是取协方差矩阵前s个最大特征值对应的特征向量构成映射矩阵,对数据进行降维。

pca-demo.png

具体可以参考下面这篇讲的很直观详细的文章

LDA-线性判别分析

思想:寻找可分性判据最大的子空间。

用到了Fisher的思想,即寻找一个向量,使得降维后类内散度最小,类间散度最大;其实就是取S−1wSb前s个特征值对应的特征向量构成映射矩阵,对数据进行处理。

lda-demo.png

DHS的模式分类一书中96页有详细的推导,浅显易懂,论文1也非常值得阅读。

ICA-独立成分分析

思想:PCA是将原始数据降维,并提取不相关的部分;ICA是将原始数据降维并提取出相互独立的属性;寻找一个线性变换z=Wx,使得z的各个分量间的独立性最大,I(z)=Elnp(z)p(z1)...p(zd)

ica-demo.png

具体可参考Machine Learning: A Probabilistic Perspective的推导计算及论文2。

PCA VS ICA

PCA的问题其实是一个基的变换,使得变换后的数据有着最大的方差。方差的大小描述的是一个变量的信息量,我们在讲一个东西的稳定性的时候,往往说要减小方差,如果一个模型的方差很大,那就说明模型不稳定了。但是对于我们用于机器学习的数据(主要是训练数据),方差大才有意义,不然输入的数据都是同一个点,那方差就为0了,这样输入的多个数据就等同于一个数据了。

pca.png

ICA是找出构成信号的相互独立部分(不需要正交),对应高阶统计量分析。ICA理论认为用来观测的混合数据阵X是由独立元S经过A线性加权获得。ICA理论的目标就是通过X求得一个分离矩阵W,使得W作用在X上所获得的信号Y是独立源S的最优逼近,该关系可以通过下式表示:

Y=WX=WAS,A=W−1

ICA相比与PCA更能刻画变量的随机统计特性,且能抑制高斯噪声。

ica.png

二维PCA

参考论文3

CCA-典型对应分析(Canonical Correlaton Analysis)

思想:找到两组基,使得两组数据在这两组基上的投影相关性最大。

用来描述两个高维变量之间的线性关系

用PLS(Partial Least Squares)来求解,参考论文4

非线性特征提取


Kernel PCA

参考论文5

Kernel FDA

参考论文6

Manifold Learning 流形学习

找到流形上的低维坐标。

利用流形学上的局部结构进行降维的方法有:ISOMAP、LLE、Laplacian Eigenmap、LPP 参考文献7,8,9,10。

准则性质总结


准则需满足的条件

特征提取与特征选择的准则需要满足:

  1. 单调性:J(x1,...,xn)<=J(x1,...,xs,xs+1)
  2. 可加性:J(x1,...,xs)=∑iJ(xi)
  3. 不变性:J(x)=J(AX)线性变换下
  4. 度量性:Jij>=0,Jij=Jji,Jij=0ifandonlyifi=j
  5. 与错误率的上界或者下届有单调关系,或者说本身就是错误率的上界或者下届

大致可分为三类

基于欧式距离的准则

  • 整体散度 St=12N2∑i,j(xi−xj)(xi−xj)‘=Sw+Sb
  • PCA:tr(St)
  • LDA:tr(Sb)/tr(Sw)
  • 基于距离的准侧概念直观,计算方便,但与错误率没有直接关系

基于概率距离的准则

  • Bhattacharyya距离 JB=−ln∫Ω[p(→a|w1)p(→a|w2)]12d→x
  • Chernoff界限 JC=−ln∫Ωp(→a|w1)sp(→a|w2)1−sd→x,0<s<1
  • KL散度 Iij(→x)=Ei[lnp(→x|wi)p(→x|wj)]

基于熵的准则

  • 熵函数 H=JC[P(w1|x),...,P(wc|x)]
  • 香农熵 J1C=−∑Ci=1P(wi|x)log2P(wi|x)
  • 平方熵 J2C=2[1−∑ci=1P2(wi|x)]
  • 广义熵 JaC[P(w1|x),...,P(wc|x)]

以上只是一个简短的概述性文章,建议根据参考文献进行扩展性阅读。



[1] Hua Yu and JieYang, A direct LDA algorithm for high - dimensional data with application to face recognition, Pattern Recognition Volume 34, Issue 10, October 2001,pp.2067- 2070

[2] A. Hyvarinenand E. Oja. Independent Component Analysis: Algorithms and Applications. Neural Networks, 13(4- 5):411 -430, 200

[3] J. Yang, D. Zhang, A.F. Frangi , and J.Y. Yang, Two - dimensional PCA: a new approach to appearance - based face representation and recognition, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 26, no. 1, pp. 131- 137, Jan. 2004

[4] R. H. David, S. Sandor and S.- T. John,Canonical correlation analysis: An overview with application to learning methods, Technical Report, CSD - TR- 03-02,2003

[5] B. Scholkopf , A. Smola , and K.R. Muller. Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, 10(5): 1299- 1319, 1998

[6] Mika, S., Ratsch , G., Weston, J., Scholkopf , B., Mullers, K.R., Fisher discriminantanalysis with kernels, Neural Networks for Signal Processing IX, Proceedings of the IEEE Signal Processing Society Workshop, pp. 41 – 48, 1999

[7] J. B. Tenenbaum , V. de Silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science, 290, pp. 2319 - 2323, 2000

[8] Sam T. Roweis , and Lawrence K. Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding,Science 22 December 2000

[9] Mikhail Belkin , Partha Niyogi ,Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , Computation , 200

[10] Xiaofei He, Partha Niyogi, Locality Preserving Projections, Advances in Neural Information Processing Systems 16 (NIPS 2003), Vancouver, Canada, 2003


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK