7

bracket type in nLab

 3 years ago
source link: https://ncatlab.org/nlab/show/bracket+type
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
bracket type in nLab

Contents

1. Idea

There are various different paradigms for the interpretation of predicate logic in type theory. In “logic-enriched type theory”, there is a separate class of “propositions” from the class of “types”. But we can also identify propositions with particular types. In the propositions as types-paradigm, every proposition is a type, and also every type is identified with a proposition (the proposition that it is an inhabited type).

By contrast, in the paradigm that may be called propositions as some types, every proposition is a type, but not every type is a proposition. The types which are propositions are generally those which “have at most one inhabitant” — in homotopy type theory this is called being of h-level 1 or being a (-1)-type. This paradigm is often used in the categorical semantics of type theory, such as the internal logic of various kinds of categories.

Under “propositions as types”, all type-theoretic operations represent corresponding logical operations (dependent sum is the existential quantifier, dependent product the universal quantifier, and so on). However, under “propositions as some types”, not every such operation preserves the class of propositions; this is particularly the case for dependent sum and disjunction(or). Thus, in order to obtain the correct logical operations, we need to reflect these constructions back into propositions somehow, finding the “underlying proposition”, corresponding to the (-1)-truncation/h-level 1-projection. This operation in type theory is called the bracket type (when denoted [A]); in homotopy type theory it can be identified with the higher inductive type isInhab.

2. Definition

In type theory

In homotopy type theory

We discuss the definition in homotopy type theory.

For A a type, the support of A denoted supp(A) or isInhab(A) or τ−1A or ‖A‖−1 or ‖A‖ or, lastly, [A], is the higher inductive type defined by the two constructors

a:A⊢isinhab(a):supp(A)
x:supp(A),y:supp(A)⊢inpath(x,y):(x=y),

where in the last sequent on the right we have the identity type. (Voevodsky, HoTTLibrary)

This says that supp(A) is the type which is universal with the property that the terms of A map to it and that any two term of A become equivalent in supp(A).

In Agda syntax this is

data isinhab {i : Level} (A : Set i) : Set i where
  inhab : A → isinhab A
  inhab-path : (x y : isinhab A) → x ≡ y

The recursion principle for supp(A) says that if B is a mere proposition and we have f:A→B, then there is an induced g:supp(A)→B such that g(isinhab(a))≡f(a) for all a:A. In other words, any mere proposition which follows from (the inhabitedness of) A already follows from supp(A). Thus, supp(A), as a mere proposition, contains no more information than the inhabitedness of A.

For more see at n-truncation modality.

3. Semantics

One presentation of the internal type theory of regular categories consists of dependent type theory with the unit type, strong extensional equality types?, strong dependent sums, and bracket types. (The internal logic of a regular category can alternatively be presented as a logic-enriched type theory?.)

The semantics of bracket types in a regular category C is as follows.

A dependent type (a type in context X)

x:X⊢A(x):Type

is interpreted in C as an arbitrary morphism

The corresponding bracket type

x:X⊢[A(x)]:Type

is interpreted then as the image-factorization

A→[A]:=im(A→X)↘↙X.

Therefore [A]→X is a monomorphism, and hence the interpretation of a proposition about the elements of X.

4. Related concepts

5. References

The original articles are

  • M.E. Maietti, The Type Theory of Categorical Universes PhD thesis, Università Delgi Studi di Padova, 1998

(which speaks of “mono types”) and

  • Frank Pfenning, Intensionality, extensionality, and proof irrelevance in modal type theory, In Proceedings of the 16th Annual Symposium on Logic in Computer Science (LICS’01), June 2001.

  • Steve Awodey, Andrej Bauer, Propositions as [Types], Journal of Logic and Computation. Volume 14, Issue 4, August 2004, pp. 447-471 (pdf)

Exposition in the context of homotopy type theory is in

Formalization in the context of homotopy type theory is in

Discussion of this in the more general context of truncations is in


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK