67

Android 8.1 启动篇(一) -- 深入研究 init(源码分析)

 5 years ago
source link: https://segmentfault.com/a/1190000015933563?amp%3Butm_medium=referral
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

前言

init进程,它是一个由内核启动的用户级进程,当Linux内核启动之后,运行的第一个进程是init,这个进程是一个守护进程,确切的说,它是Linux系统中用户控件的第一个进程,所以它的进程号是1。它的生命周期贯穿整个linux 内核运行的始终, linux中所有其它的进程的共同始祖均为init进程。

开篇

Android系统启动过程

  按下电源系统启动

当电源按下时引导芯片代码开始从预定义的地方(固化在ROM)开始执行,加载引导程序Bootloader到RAM,然后执行。

  引导程序Bootloader

引导程序是在Android操作系统开始运行前的一个小程序,它的主要作用是把系统OS拉起来并运行。

  linux内核启动

内核启动时,设置缓存、被保护存储器、计划列表,加载驱动。当内核完成系统设置,它首先在系统文件中寻找”init”文件,然后启动root进程或者系统的第一个进程。

  init进程启动

:sparkles: 这就是我们接下来要讨论的内容 :sparkles:

Read The Fucking Code

Android init进程的入口文件在system/core/init/init.cpp中,由于init是命令行程序,所以分析init.cpp首先应从main函数开始:

第一阶段(内核态)

判断及增加环境变量

int main(int argc, char** argv) {
    /* ------------ 第一阶段 ------------ BEGIN------------ */
    //根据参数,判断是否需要启动ueventd和watchdogd
    if (!strcmp(basename(argv[0]), "ueventd")) {                                         // 启动ueventd
        return ueventd_main(argc, argv);
    }

    if (!strcmp(basename(argv[0]), "watchdogd")) {                                       // 启动watchdogd
        return watchdogd_main(argc, argv);
    }

    if (REBOOT_BOOTLOADER_ON_PANIC) {
        InstallRebootSignalHandlers();                                                   // 若紧急重启,则安装对应的消息处理器
    }

    add_environment("PATH", _PATH_DEFPATH);                                              // 添加环境变量
    ... ...
}

创建并挂载相关的文件系统

int main(int argc, char** argv) {
    /* 01. 判断及增加环境变量 */
    bool is_first_stage = (getenv("INIT_SECOND_STAGE") == nullptr);                      

    if (is_first_stage) {                                                                // 判断是否是系统启动的第一阶段(第一次进入:true)    
        boot_clock::time_point start_time = boot_clock::now();                           // 用于记录启动时间
        
        // Clear the umask.
        umask(0);                                                                        // 清除屏蔽字(file mode creation mask),保证新建的目录的访问权限不受屏蔽字影响

        // Get the basic filesystem setup we need put together in the initramdisk
        // on / and then we'll let the rc file figure out the rest.
        mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755");                         // 挂载tmpfs文件系统 
        mkdir("/dev/pts", 0755);
        mkdir("/dev/socket", 0755);
        mount("devpts", "/dev/pts", "devpts", 0, NULL);                                  // 挂载devpts文件系统 
        #define MAKE_STR(x) __STRING(x)
        mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC));      // 挂载proc文件系统
        
        // Don't expose the raw commandline to unprivileged processes.
        chmod("/proc/cmdline", 0440);                                                    // 8.0新增, 收紧了cmdline目录的权限

        gid_t groups[] = { AID_READPROC };                                               // 8.0新增,增加了个用户组
        setgroups(arraysize(groups), groups);        

        mount("sysfs", "/sys", "sysfs", 0, NULL);                                        // 挂载sysfs文件系统 
        
        mount("selinuxfs", "/sys/fs/selinux", "selinuxfs", 0, NULL);                     // 8.0新增

        mknod("/dev/kmsg", S_IFCHR | 0600, makedev(1, 11));                              // 提前创建了kmsg设备节点文件,用于输出log信息
        mknod("/dev/random", S_IFCHR | 0666, makedev(1, 8));
        mknod("/dev/urandom", S_IFCHR | 0666, makedev(1, 9));
        
        ... ...
    }

如上所示,该部分主要用于创建和挂载启动所需的文件目录。需要注意的是,在编译Android系统源码时,在生成的根文件系统中, 并不存在这些目录,它们是系统运行时的目录,即当系统终止时,就会消失。

四类文件系统:

tmpfs:一种虚拟内存文件系统,它会将所有的文件存储在虚拟内存中,如果你将tmpfs文件系统卸载后,那么其下的所有的内容将不复存在。tmpfs既可以使用RAM,也可以使用交换分区,会根据你的实际需要而改变大小。tmpfs的速度非常惊人,毕竟它是驻留在RAM中的,即使用了交换分区,性能仍然非常卓越。由于tmpfs是驻留在RAM的,因此它的内容是不持久的。断电后,tmpfs的内容就消失了,这也是被称作tmpfs的根本原因。

devpts:为伪终端提供了一个标准接口,它的标准挂接点是/dev/ pts。只要pty的主复合设备/dev/ptmx被打开,就会在/dev/pts下动态的创建一个新的pty设备文件。

proc:一个非常重要的虚拟文件系统,它可以看作是内核内部数据结构的接口,通过它我们可以获得系统的信息,同时也能够在运行时修改特定的内核参数。

sysfs:与proc文件系统类似,也是一个不占有任何磁盘空间的虚拟文件系统。它通常被挂接在/sys目录下。sysfs文件系统是Linux2.6内核引入的,它把连接在系统上的设备和总线组织成为一个分级的文件,使得它们可以在用户空间存取。

重定向输入输出/内核Log系统

int main(int argc, char** argv) {
    /* ------------ 第一阶段 ------------ BEGIN------------ */
    /* 01. 判断及增加环境变量 */
    /* 02. 创建并挂载相关的文件系统 */
    if (is_first_stage) {
        ... ...
        // Now that tmpfs is mounted on /dev and we have /dev/kmsg, we can actually
        // talk to the outside world...
        InitKernelLogging(argv);
        ... ...
    }
    ... ...

屏蔽标准的输入输出

跟踪InitKernelLogging(): system/core/init/log.cpp

void InitKernelLogging(char* argv[]) {
    // Make stdin/stdout/stderr all point to /dev/null.
    int fd = open("/sys/fs/selinux/null", O_RDWR);
    if (fd == -1) {                                                  // 若开启失败,则记录log
        int saved_errno = errno;
        android::base::InitLogging(argv, &android::base::KernelLogger);
        errno = saved_errno;
        PLOG(FATAL) << "Couldn't open /sys/fs/selinux/null";             
    }
    dup2(fd, 0);                                                     // dup2函数的作用是用来复制一个文件的描述符, 通常用来重定向进程的stdin、stdout和stderr
    dup2(fd, 1);                                                     // 它的函数原形是:int dup2(int oldfd, int targetfd),该函数执行后,targetfd将变成oldfd的复制品
    dup2(fd, 2);                                                     // 因此这边的过程其实就是:创建出__null__设备后,将0、1、2绑定到__null__设备上
    if (fd > 2) close(fd);                                           // 所以init进程调用InitKernelLogging函数后,通过标准的输入输出无法输出信息

    android::base::InitLogging(argv, &android::base::KernelLogger);
}

设置kernel logger

跟踪InitLogging():system/core/base/logging.cpp

// 设置KernelLogger
void InitLogging(char* argv[], LogFunction&& logger, AbortFunction&& aborter) {
  //设置logger
  SetLogger(std::forward<LogFunction>(logger));
  SetAborter(std::forward<AbortFunction>(aborter));

  if (gInitialized) {
    return;
  }

  gInitialized = true;

  // Stash the command line for later use. We can use /proc/self/cmdline on
  // Linux to recover this, but we don't have that luxury on the Mac/Windows,
  // and there are a couple of argv[0] variants that are commonly used.
  if (argv != nullptr) {
    std::lock_guard<std::mutex> lock(LoggingLock());
    ProgramInvocationName() = basename(argv[0]);
  }

  const char* tags = getenv("ANDROID_LOG_TAGS");
  if (tags == nullptr) {
    return;
  }

  // 根据TAG决定最小记录等级
  std::vector<std::string> specs = Split(tags, " ");
  for (size_t i = 0; i < specs.size(); ++i) {
    // "tag-pattern:[vdiwefs]"
    std::string spec(specs[i]);
    if (spec.size() == 3 && StartsWith(spec, "*:")) {
      switch (spec[2]) {
        case 'v':
          gMinimumLogSeverity = VERBOSE;
          continue;
        ... ...
      }
    }
    LOG(FATAL) << "unsupported '" << spec << "' in ANDROID_LOG_TAGS (" << tags
               << ")";
  }
}

当需要输出日志时,KernelLogger函数就会被调用:

#if defined(__linux__)
void KernelLogger(android::base::LogId, android::base::LogSeverity severity,
                  const char* tag, const char*, unsigned int, const char* msg) {
  ... ...

  // 打开log节点
  static int klog_fd = TEMP_FAILURE_RETRY(open("/dev/kmsg", O_WRONLY | O_CLOEXEC));
  if (klog_fd == -1) return;

  // 决定log等级
  int level = kLogSeverityToKernelLogLevel[severity];

  // The kernel's printk buffer is only 1024 bytes.
  // TODO: should we automatically break up long lines into multiple lines?
  // Or we could log but with something like "..." at the end?
  char buf[1024];
  size_t size = snprintf(buf, sizeof(buf), "<%d>%s: %s\n", level, tag, msg);
  if (size > sizeof(buf)) {
    size = snprintf(buf, sizeof(buf), "<%d>%s: %zu-byte message too long for printk\n",
                    level, tag, size);
  }

  iovec iov[1];
  iov[0].iov_base = buf;
  iov[0].iov_len = size;
  // 通过iovec将log发送到dev/kmsg
  TEMP_FAILURE_RETRY(writev(klog_fd, iov, 1));
}
#endif

挂在一些分区设备

int main(int argc, char** argv) {
    /* ------------ 第一阶段 ------------ BEGIN------------ */
    /* 01. 判断及增加环境变量 */
    /* 02. 创建文件系统目录并挂载相关的文件系统 */
    /* 03. 重定向输入输出/内核Log系统 */
    if (is_first_stage) {                                                                
        ... ...
        // 挂载特定的分区设备
        if (!DoFirstStageMount()) {
            LOG(ERROR) << "Failed to mount required partitions early ...";
            panic();        // panic会尝试reboot
        }
    }
    ... ...

跟踪DoFirstStageMount():system/core/init/init_first_stage.cpp

// Mounts partitions specified by fstab in device tree.
bool DoFirstStageMount() {
    // Skips first stage mount if we're in recovery mode.
    if (IsRecoveryMode()) {
        LOG(INFO) << "First stage mount skipped (recovery mode)";
        return true;
    }

    // Firstly checks if device tree fstab entries are compatible.
    if (!is_android_dt_value_expected("fstab/compatible", "android,fstab")) {
        LOG(INFO) << "First stage mount skipped (missing/incompatible fstab in device tree)";
        return true;
    }

    // 满足上述条件时,就会调用FirstStageMount的DoFirstStageMount函数
    std::unique_ptr<FirstStageMount> handle = FirstStageMount::Create();
    if (!handle) {
        LOG(ERROR) << "Failed to create FirstStageMount";
        return false;
    }
    
    // 主要是初始化特定设备并挂载
    return handle->DoFirstStageMount();
}

完成SELinux相关工作

int main(int argc, char** argv) {
    /* ------------ 第一阶段 ------------ BEGIN------------ */
    /* 01. 判断及增加环境变量 */
    /* 02. 创建文件系统目录并挂载相关的文件系统 */
    /* 03. 重定向输入输出/内核Log系统 */
    /* 04. 挂在一些分区设备 */
    if (is_first_stage) {                                                                
        ... ...

        // 此处应该是初始化安全框架:Android Verified Boot
        // AVB主要用于防止系统文件本身被篡改,还包含了防止系统回滚的功能,
        // 以免有人试图回滚系统并利用以前的漏洞
        SetInitAvbVersionInRecovery();

        // Set up SELinux, loading the SELinux policy.                                   
        selinux_initialize(true);                                                        // 调用selinux_initialize启动SELinux
        ... ...
    }
    ... ...

跟踪selinux_initialize():

static void selinux_initialize(bool in_kernel_domain) {
    Timer t;

    selinux_callback cb;
    cb.func_log = selinux_klog_callback;               // 用于打印log的回调函数
    selinux_set_callback(SELINUX_CB_LOG, cb);
    cb.func_audit = audit_callback;                    // 用于检查权限的回调函数
    selinux_set_callback(SELINUX_CB_AUDIT, cb);

    // init进程的运行是区分用户态和内核态的,first_stage运行在内核态
    if (in_kernel_domain) {
        LOG(INFO) << "Loading SELinux policy";
        // 用于加载sepolicy文件
        // 该函数最终将sepolicy文件传递给kernel,这样kernel就有了安全策略配置文件,后续的MAC才能开展起来。
        if (!selinux_load_policy()) {
            panic();
        }

        bool kernel_enforcing = (security_getenforce() == 1);         // 内核中读取的信息
        bool is_enforcing = selinux_is_enforcing();                   // 命令行中得到的数据
        // 用于设置selinux的工作模式。selinux有两种工作模式:
        // 1、”permissive”,所有的操作都被允许(即没有MAC),但是如果违反权限的话,会记录日志
        // 2、”enforcing”,所有操作都会进行权限检查。在一般的终端中,应该工作于enforing模式
        if (kernel_enforcing != is_enforcing) {
            if (security_setenforce(is_enforcing)) {
                PLOG(ERROR) << "security_setenforce(%s) failed" << (is_enforcing ? "true" : "false");
                security_failure();                                   // 将重启进入recovery mode
            }
        }

        std::string err;
        if (!WriteFile("/sys/fs/selinux/checkreqprot", "0", &err)) {
            LOG(ERROR) << err;
            security_failure();
        }

        // init's first stage can't set properties, so pass the time to the second stage.
        setenv("INIT_SELINUX_TOOK", std::to_string(t.duration().count()).c_str(), 1);
    } else {
        selinux_init_all_handles();                                   // 在second stage调用时,初始化所有的handle
    }
}

is_first_stage 收尾

int main(int argc, char** argv) {
    /* ------------ 第一阶段 ------------ BEGIN------------ */
    /* 01. 判断及增加环境变量 */
    /* 02. 创建文件系统目录并挂载相关的文件系统 */
    /* 03. 重定向输入输出/内核Log系统 */
    /* 04. 挂在一些分区设备 */
    /* 05. 完成SELinux相关工作 */
    if (is_first_stage) {                                                                
        ... ...

        // We're in the kernel domain, so re-exec init to transition to the init domain now
        // that the SELinux policy has been loaded.
        if (selinux_android_restorecon("/init", 0) == -1) {                              // 按selinux policy要求,重新设置init文件属性
            PLOG(ERROR) << "restorecon failed";
            security_failure();                                                          // 失败的话会reboot
        }
        
        static constexpr uint32_t kNanosecondsPerMillisecond = 1e6;
        uint64_t start_ms = start_time.time_since_epoch().count() / kNanosecondsPerMillisecond;
        setenv("INIT_STARTED_AT", std::to_string(start_ms).c_str(), 1);                  // 记录初始化时的时间

        char* path = argv[0];
        char* args[] = { path, nullptr };
        execv(path, args);                                                               // 再次调用init的main函数,启动用户态的init进程

        // execv() only returns if an error happened, in which case we
        // panic and never fall through this conditional.
        PLOG(ERROR) << "execv(\"" << path << "\") failed";
        security_failure();                                                              // 内核态的进程不应该退出,若退出则会重启
    }
    /* 06. is_first_stage 收尾 */
    /* ------------ 第一阶段 ------------- END ------------ */
    ... ...
}

上面所有的源码我们都是围绕第一阶段分析(is_first_stage),自此第一阶段结束,会复位一些信息,并设置一些环境变量,最后启动用户态的init进程,进入init第二阶段。

第二阶段(用户态)

init进程的第二阶段仍然从main函数开始入手(继续分析main函数剩余源码)

初始化属性域

int main(int argc, char** argv) {
    /* ------------ 第一阶段 ------------ BEGIN------------ */
    /* 01. 判断及增加环境变量 */
    /* 02. 创建文件系统目录并挂载相关的文件系统 */
    /* 03. 重定向输入输出/内核Log系统 */
    /* 04. 挂在一些分区设备 */
    /* 05. 完成SELinux相关工作 */
    /* 06. is_first_stage 收尾 */
    /* ------------ 第一阶段 ------------- END ------------ */
    
    /* ------------ 第二阶段 ------------ BEGIN------------ */

    // 同样进行一些判断及环境变量设置的工作
    
    ... ...

    // 现在 is_first_stage 为 false 了
    bool is_first_stage = (getenv("INIT_SECOND_STAGE") == nullptr);

    // 这部分工作不再执行了
    if (is_first_stage) {
        ...........
    }

    // At this point we're in the second stage of init.
    InitKernelLogging(argv);                       // 同样屏蔽标准输入输出及定义Kernel logger
    LOG(INFO) << "init second stage started!";

    // Set up a session keyring that all processes will have access to. It
    // will hold things like FBE encryption keys. No process should override
    // its session keyring.
    keyctl_get_keyring_ID(KEY_SPEC_SESSION_KEYRING, 1);      // 最后调用syscall,设置安全相关的值
    
    // Indicate that booting is in progress to background fw loaders, etc.
    close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000));         // 这里的功能类似于“锁”
    
    ... ...
    property_init();                               // 初始化属性域 --> 定义于system/core/init/property_service.cpp
    
    // If arguments are passed both on the command line and in DT,
    // properties set in DT always have priority over the command-line ones.
    process_kernel_dt();
    process_kernel_cmdline();                      // 处理内核命令

    // Propagate the kernel variables to internal variables
    // used by init as well as the current required properties.
    export_kernel_boot_props();

    // Make the time that init started available for bootstat to log.
    property_set("ro.boottime.init", getenv("INIT_STARTED_AT"));
    property_set("ro.boottime.init.selinux", getenv("INIT_SELINUX_TOOK"));

    // Set libavb version for Framework-only OTA match in Treble build.
    const char* avb_version = getenv("INIT_AVB_VERSION");
    if (avb_version) property_set("ro.boot.avb_version", avb_version);
    
    ... ...
}

这部分代码主要的工作应该就是调用 property_init 初始化属性域,然后设置各种属性。

在Android平台中,为了让运行中的所有进程共享系统运行时所需要的各种设置值,系统开辟了属性存储区域,并提供了访问该区域的API。

跟踪property_init():system/core/init/property_service.cpp

void property_init() {
    if (__system_property_area_init()) {                   // 最终调用_system_property_area_init函数初始化属性域
        LOG(ERROR) << "Failed to initialize property area";
        exit(1);
    }
}

清空环境变量

int main(int argc, char** argv) {
    /* ------------ 第一阶段 ------------ BEGIN------------ */
    /* 01. 判断及增加环境变量 */
    /* 02. 创建文件系统目录并挂载相关的文件系统 */
    /* 03. 重定向输入输出/内核Log系统 */
    /* 04. 挂在一些分区设备 */
    /* 05. 完成SELinux相关工作 */
    /* 06. is_first_stage 收尾 */
    /* ------------ 第一阶段 ------------- END ------------ */
    
    /* ------------ 第二阶段 ------------ BEGIN------------ */
    /* 01. 初始化属性域 */
    // Clean up our environment.
    unsetenv("INIT_SECOND_STAGE");
    unsetenv("INIT_STARTED_AT");                 // 清除掉之前使用过的环境变量
    unsetenv("INIT_SELINUX_TOOK");
    unsetenv("INIT_AVB_VERSION");
    ... ...
}

完成SELinux相关工作

int main(int argc, char** argv) {
    /* ------------ 第一阶段 ------------ BEGIN------------ */
    /* 01. 判断及增加环境变量 */
    /* 02. 创建文件系统目录并挂载相关的文件系统 */
    /* 03. 重定向输入输出/内核Log系统 */
    /* 04. 挂在一些分区设备 */
    /* 05. 完成SELinux相关工作 */
    /* 06. is_first_stage 收尾 */
    /* ------------ 第一阶段 ------------- END ------------ */
    
    /* ------------ 第二阶段 ------------ BEGIN------------ */
    /* 01. 初始化属性域 */
    /* 02. 清空环境变量 */
    // Now set up SELinux for second stage.
    selinux_initialize(false);
    selinux_restore_context();                   // 再次完成selinux相关的工作

我们发现在init进程的第一阶段,也调用了selinux_initialize函数,那么两者有什么区别?

init进程第一阶段主要加载selinux相关的策略,而第二阶段调用selinux_initialize仅仅注册一些处理器。

我们跟下selinux_initialize():

static void selinux_initialize(bool in_kernel_domain) {
    Timer t;

    selinux_callback cb;
    cb.func_log = selinux_klog_callback;
    selinux_set_callback(SELINUX_CB_LOG, cb);
    cb.func_audit = audit_callback;
    selinux_set_callback(SELINUX_CB_AUDIT, cb);

    if (in_kernel_domain) {
        ... ...                              // 这边就是第一阶段的工作
    } else {
        selinux_init_all_handles();          // 这边就是第二阶段的工作:注册处理器
    }
}

再来看一下selinux_restore_context():主要是按 selinux policy 要求,重新设置一些文件的属性。

// The files and directories that were created before initial sepolicy load or
// files on ramdisk need to have their security context restored to the proper
// value. This must happen before /dev is populated by ueventd.
// 如注释所述,以下文件在selinux被加载前就创建了
// 于是,在selinux启动后,需要重新设置一些属性
static void selinux_restore_context() {
    LOG(INFO) << "Running restorecon...";
    selinux_android_restorecon("/dev", 0);
    selinux_android_restorecon("/dev/kmsg", 0);
    selinux_android_restorecon("/dev/socket", 0);
    selinux_android_restorecon("/dev/random", 0);
    selinux_android_restorecon("/dev/urandom", 0);
    selinux_android_restorecon("/dev/__properties__", 0);

    selinux_android_restorecon("/plat_file_contexts", 0);
    selinux_android_restorecon("/nonplat_file_contexts", 0);
    selinux_android_restorecon("/plat_property_contexts", 0);
    selinux_android_restorecon("/nonplat_property_contexts", 0);
    selinux_android_restorecon("/plat_seapp_contexts", 0);
    selinux_android_restorecon("/nonplat_seapp_contexts", 0);
    selinux_android_restorecon("/plat_service_contexts", 0);
    selinux_android_restorecon("/nonplat_service_contexts", 0);
    selinux_android_restorecon("/plat_hwservice_contexts", 0);
    selinux_android_restorecon("/nonplat_hwservice_contexts", 0);
    selinux_android_restorecon("/sepolicy", 0);
    selinux_android_restorecon("/vndservice_contexts", 0);

    selinux_android_restorecon("/dev/block", SELINUX_ANDROID_RESTORECON_RECURSE);
    selinux_android_restorecon("/dev/device-mapper", 0);

    selinux_android_restorecon("/sbin/mke2fs_static", 0);
    selinux_android_restorecon("/sbin/e2fsdroid_static", 0);
}

创建epoll句柄

int main(int argc, char** argv) {
    /* ------------ 第一阶段 ------------ BEGIN------------ */
    /* 01. 判断及增加环境变量 */
    /* 02. 创建文件系统目录并挂载相关的文件系统 */
    /* 03. 重定向输入输出/内核Log系统 */
    /* 04. 挂在一些分区设备 */
    /* 05. 完成SELinux相关工作 */
    /* 06. is_first_stage 收尾 */
    /* ------------ 第一阶段 ------------- END ------------ */
    
    /* ------------ 第二阶段 ------------ BEGIN------------ */
    /* 01. 初始化属性域 */
    /* 02. 清空环境变量 */
    /* 03. 完成SELinux相关工作 */
    epoll_fd = epoll_create1(EPOLL_CLOEXEC);       // 调用epoll_create1创建epoll句柄
    if (epoll_fd == -1) {
        PLOG(ERROR) << "epoll_create1 failed";
        exit(1);
    }
    ... ...
}

在linux的网络编程中,很长的时间都在使用 select 来做事件触发。在linux新的内核中,有了一种替换它的机制,就是 epoll。

相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的 select 实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。

epoll机制一般使用epoll_create(int size)函数创建epoll句柄,size用来告诉内核这个句柄可监听的fd的数目。

注意这个参数不同于select()中的第一个参数,在select中需给出最大监听数加1的值。

此外,当创建好epoll句柄后,它就会占用一个fd值,在linux下如果查看/proc/进程id/fd/,能够看到创建出的fd,因此在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。

上述代码使用的epoll_create1(EPOLL_CLOEXEC)来创建epoll句柄,该标志位表示生成的epoll fd具有“执行后关闭”特性。

装载子进程信号处理器

int main(int argc, char** argv) {
    /* ------------ 第一阶段 ------------ BEGIN------------ */
    /* 01. 判断及增加环境变量 */
    /* 02. 创建文件系统目录并挂载相关的文件系统 */
    /* 03. 重定向输入输出/内核Log系统 */
    /* 04. 挂在一些分区设备 */
    /* 05. 完成SELinux相关工作 */
    /* 06. is_first_stage 收尾 */
    /* ------------ 第一阶段 ------------- END ------------ */
    
    /* ------------ 第二阶段 ------------ BEGIN------------ */
    /* 01. 初始化属性域 */
    /* 02. 清空环境变量 */
    /* 03. 完成SELinux相关工作 */
    /* 04. 创建epoll句柄 */
    signal_handler_init();                         // 装载子进程信号处理器
}

init是一个守护进程,为了防止init的子进程成为僵尸进程(zombie process),需要init在子进程在结束时获取子进程的结束码,通过结束码将程序表中的子进程移除,防止成为僵尸进程的子进程占用程序表的空间(程序表的空间达到上限时,系统就不能再启动新的进程了,会引起严重的系统问题)。

在linux当中,父进程是通过捕捉 SIGCHLD 信号来得知子进程运行结束的情况,此处init进程调用 signal_handler_init 的目的就是捕获子进程结束的信号。

我们跟踪下signal_handler_init():

void signal_handler_init() {
    // Create a signalling mechanism for SIGCHLD.
    int s[2];
    // 利用socketpair创建出已经连接的两个socket,分别作为信号的读、写端
    if (socketpair(AF_UNIX, SOCK_STREAM | SOCK_NONBLOCK | SOCK_CLOEXEC, 0, s) == -1) {
        PLOG(ERROR) << "socketpair failed";
        exit(1);
    }

    signal_write_fd = s[0];
    signal_read_fd = s[1];

    // Write to signal_write_fd if we catch SIGCHLD.
    struct sigaction act;
    memset(&act, 0, sizeof(act));

    // 信号处理器对应的执行函数为SIGCHLD_handler
    // 被存在sigaction结构体中,负责处理SIGCHLD消息
    act.sa_handler = SIGCHLD_handler;
    act.sa_flags = SA_NOCLDSTOP;
    
    // 调用信号安装函数sigaction,将监听的信号及对应的信号处理器注册到内核中
    sigaction(SIGCHLD, &act, 0);

    // 用于终止出现问题的子进程
    ServiceManager::GetInstance().ReapAnyOutstandingChildren();

    // 注册信号处理函数handle_signal
    register_epoll_handler(signal_read_fd, handle_signal);
}

在深入分析代码前,我们需要了解一些基本概念:Linux进程通过互相发送消息来实现进程间的通信,这些消息被称为“信号”。每个进程在处理其它进程发送的信号时都要注册处理者,处理者被称为信号处理器。

注意到sigaction结构体的sa_flags为SA_NOCLDSTOP。由于系统默认在子进程暂停时也会发送信号SIGCHLD,init需要忽略子进程在暂停时发出的SIGCHLD信号,因此将act.sa_flags 置为SA_NOCLDSTOP,该标志位表示仅当进程终止时才接受SIGCHLD信号。

接下来,我们分步骤详细了解一下signal_handler_init具体的工作流程。

SIGCHLD_handler

// system/core/init/signal_handler.cpp
static void SIGCHLD_handler(int) {
    if (TEMP_FAILURE_RETRY(write(signal_write_fd, "1", 1)) == -1) {
        PLOG(ERROR) << "write(signal_write_fd) failed";
    }
}

从上面代码我们知道,init进程是所有进程的父进程,当其子进程终止产生SIGCHLD信号时,SIGCHLD_handler将对signal_write_fd执行写操作。由于socketpair的绑定关系,这将触发信号对应的signal_read_fd收到数据。

register_epoll_handler

根据前文的代码我们知道,在装载信号监听器的最后,signal_handler_init调用了register_epoll_handler,其代码如下所示,注意传入的参数分别为signal_read_fd和handle_signal:

// system/core/init/init.cpp
void register_epoll_handler(int fd, void (*fn)()) {
    epoll_event ev;
    ev.events = EPOLLIN;
    ev.data.ptr = reinterpret_cast<void*>(fn);
    // epoll_fd增加一个监听对象fd,fd上有数据到来时,调用fn处理
    if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fd, &ev) == -1) {
        PLOG(ERROR) << "epoll_ctl failed";
    }
}

根据代码不难看出:当epoll句柄监听到signal_read_fd中有数据可读时,将调用handle_signal进行处理。

至此,结合上文我们知道:当init进程调用signal_handler_init后,一旦收到子进程终止带来的SIGCHLD消息后,将利用信号处理者SIGCHLD_handler向signal_write_fd写入信息;由于绑定的关系,epoll句柄将监听到signal_read_fd收到消息,于是将调用handle_signal进行处理。

handle_signal

// system/core/init/signal_handler.cpp
static void handle_signal() {
    // Clear outstanding requests.
    char buf[32];
    read(signal_read_fd, buf, sizeof(buf));

    ServiceManager::GetInstance().ReapAnyOutstandingChildren();
}

从代码中可以看出,handle_signal只是清空signal_read_fd中的数据,然后调用ServiceManager::GetInstance().ReapAnyOutstandingChildren()。

ServiceManager定义于 system/core/init/service.cpp 中,是一个单例对象:

... ...

ServiceManager::ServiceManager() {
}

ServiceManager& ServiceManager::GetInstance() {
    static ServiceManager instance;
    return instance;
}

... ...

void ServiceManager::ReapAnyOutstandingChildren() {
    while (ReapOneProcess()) {
    }
}

... ...

如上所示,ReapAnyOutstandingChildren函数实际上调用了ReapOneProcess。我们结合代码,看看ReapOneProcess的具体工作。

bool ServiceManager::ReapOneProcess() {
    siginfo_t siginfo = {};
    // This returns a zombie pid or informs us that there are no zombies left to be reaped.
    // It does NOT reap the pid; that is done below.
    //用waitid函数获取状态发生变化的子进程pid
    //waitid的标记为WNOHANG,即非阻塞,返回为正值就说明有进程挂掉了
    if (TEMP_FAILURE_RETRY(waitid(P_ALL, 0, &siginfo, WEXITED | WNOHANG | WNOWAIT)) != 0) {
        PLOG(ERROR) << "waitid failed";
        return false;
    }

    auto pid = siginfo.si_pid;
    if (pid == 0) return false;

    // At this point we know we have a zombie pid, so we use this scopeguard to reap the pid
    // whenever the function returns from this point forward.
    // We do NOT want to reap the zombie earlier as in Service::Reap(), we kill(-pid, ...) and we
    // want the pid to remain valid throughout that (and potentially future) usages.
    auto reaper = make_scope_guard([pid] { TEMP_FAILURE_RETRY(waitpid(pid, nullptr, WNOHANG)); });

    if (PropertyChildReap(pid)) {
        return true;
    }

    // 利用FindServiceByPid函数,找到pid对应的服务
    // FindServiceByPid主要通过轮询解析init.rc生成的service_list,找到pid与参数一致的srvc
    Service* svc = FindServiceByPid(pid);

    ... ...                             // 输出服务结束的原因
    
    if (!svc) {                         // 没有找到,说明已经结束了
        return true;
    }

    svc->Reap();

    // 根据svc的类型,决定后续的处理方式
    if (svc->flags() & SVC_EXEC) {
        exec_waiter_.reset();           // 可执行服务则重置对应的waiter
    }
    if (svc->flags() & SVC_TEMPORARY) {
        RemoveService(*svc);            // 移除临时服务
    }

    return true;
}

Reap

void Service::Reap() {
    // 清理未携带SVC_ONESHOT 或 携带了SVC_RESTART标志的srvc的进程组
    if (!(flags_ & SVC_ONESHOT) || (flags_ & SVC_RESTART)) {
        KillProcessGroup(SIGKILL);
    }

    // Remove any descriptor resources we may have created.
    // 清除srvc中创建出的任意描述符
    std::for_each(descriptors_.begin(), descriptors_.end(),
                  std::bind(&DescriptorInfo::Clean, std::placeholders::_1));

    // 清理工作完毕后,后面决定是否重启机器或重启服务
    // TEMP服务不用参与这种判断
    if (flags_ & SVC_TEMPORARY) {
        return;
    }

    pid_ = 0;
    flags_ &= (~SVC_RUNNING);

    // Oneshot processes go into the disabled state on exit,
    // except when manually restarted.
    // 对于携带了SVC_ONESHOT并且未携带SVC_RESTART的srvc,将这类服务的标志置为SVC_DISABLED,不再自启动
    if ((flags_ & SVC_ONESHOT) && !(flags_ & SVC_RESTART)) {
        flags_ |= SVC_DISABLED;
    }

    // Disabled and reset processes do not get restarted automatically.
    if (flags_ & (SVC_DISABLED | SVC_RESET))  {
        NotifyStateChange("stopped");
        return;
    }

    // If we crash > 4 times in 4 minutes, reboot into recovery.
    boot_clock::time_point now = boot_clock::now();
    
    // 未携带SVC_RESTART的关键服务,在规定的间隔内,crash字数过多时,会导致整机重启;
    if ((flags_ & SVC_CRITICAL) && !(flags_ & SVC_RESTART)) {
        if (now < time_crashed_ + 4min) {
            if (++crash_count_ > 4) {
                LOG(ERROR) << "critical process '" << name_ << "' exited 4 times in 4 minutes";
                panic();
            }
        } else {
            time_crashed_ = now;
            crash_count_ = 1;
        }
    }

    // 将待重启srvc的标志位置为SVC_RESTARTING(init进程将根据该标志位,重启服务)
    flags_ &= (~SVC_RESTART);
    flags_ |= SVC_RESTARTING;

    // Execute all onrestart commands for this service.
    // 重启在init.rc文件中带有onrestart选项的服务
    onrestart_.ExecuteAllCommands();

    NotifyStateChange("restarting");
    return;
}

不难看出,Reap函数的主要作用就是清除问题进程相关的资源,然后根据进程对应的类型,决定是否重启机器或重启进程。

ExecuteAllCommands

我们在这一部分的最后,看看定义于system/core/init/Action.cpp中的ExecuteAllCommands函数:

void Action::ExecuteAllCommands() const {
    for (const auto& c : commands_) {
        ExecuteCommand(c);
    }
}

void Action::ExecuteCommand(const Command& command) const {
    android::base::Timer t;
    // 进程重启时,将执行对应的函数
    int result = command.InvokeFunc();

    // 打印log
    auto duration = t.duration();
    // Any action longer than 50ms will be warned to user as slow operation
    if (duration > 50ms || android::base::GetMinimumLogSeverity() <= android::base::DEBUG) {
        std::string trigger_name = BuildTriggersString();
        std::string cmd_str = command.BuildCommandString();

        LOG(INFO) << "Command '" << cmd_str << "' action=" << trigger_name << " (" << filename_
                  << ":" << command.line() << ") returned " << result << " took "
                  << duration.count() << "ms.";
    }
}

整个signal_handler_init的内容比较多,在此总结一下:signal_handler_init的本质就是监听子进程死亡的信息,然后进行对应的清理工作,并根据死亡进程的类型,决定是否需要重启进程或机器。

启动属性服务

int main(int argc, char** argv) {
    /* ------------ 第一阶段 ------------ BEGIN------------ */
    /* 01. 判断及增加环境变量 */
    /* 02. 创建文件系统目录并挂载相关的文件系统 */
    /* 03. 重定向输入输出/内核Log系统 */
    /* 04. 挂在一些分区设备 */
    /* 05. 完成SELinux相关工作 */
    /* 06. is_first_stage 收尾 */
    /* ------------ 第一阶段 ------------- END ------------ */
    
    /* ------------ 第二阶段 ------------ BEGIN------------ */
    /* 01. 初始化属性域 */
    /* 02. 清空环境变量 */
    /* 03. 完成SELinux相关工作 */
    /* 04. 创建epoll句柄 */
    /* 05. 装载子进程信号处理器 */
    property_load_boot_defaults();                 // 进程调用property_load_boot_defaults进行默认属性配置相关的工作
    export_oem_lock_status();                      // 最终就是决定"ro.boot.flash.locked"的值
    start_property_service();                      // 启动属性服务
    set_usb_controller();
    ... ...
}

老样子,这边我们跟踪几个重要的函数。

property_load_boot_defaults

void property_load_boot_defaults() {
    // 就是从各种路径读取默认配置
    // load_properties_from_file的基本操作就是read_file,然后解析并设置
    if (!load_properties_from_file("/system/etc/prop.default", NULL)) {
        // Try recovery path
        if (!load_properties_from_file("/prop.default", NULL)) {
            // Try legacy path
            load_properties_from_file("/default.prop", NULL);
        }
    }
    load_properties_from_file("/odm/default.prop", NULL);
    load_properties_from_file("/vendor/default.prop", NULL);

    update_sys_usb_config();          // 就是设置"persist.sys.usb.config"相关的配置
}

如代码所示,property_load_boot_defaults 实际上就是调用 load_properties_from_file 解析配置文件,然后根据解析的结果,设置系统属性。

start_property_service

void start_property_service() {
    property_set("ro.property_service.version", "2");

    // 创建了一个非阻塞socket
    property_set_fd = CreateSocket(PROP_SERVICE_NAME, SOCK_STREAM | SOCK_CLOEXEC | SOCK_NONBLOCK,
                                   false, 0666, 0, 0, nullptr, sehandle);
    if (property_set_fd == -1) {
        PLOG(ERROR) << "start_property_service socket creation failed";
        exit(1);
    }

    // 调用listen函数监听property_set_fd, 于是该socket变成一个server
    listen(property_set_fd, 8);

    // 监听server socket上是否有数据到来
    register_epoll_handler(property_set_fd, handle_property_set_fd);
}

init进程在共享内存区域中,创建并初始化属性域。其它进程可以访问属性域中的值,但更改属性值仅能在init进程中进行。这就是init进程调用start_property_service的原因。

其它进程修改属性值时,要预先向init进程提交值变更申请,然后init进程处理该申请,并修改属性值。在访问和修改属性时,init进程都可以进行权限控制。

匹配命令和函数之间对应关系

/* ------------ 第一阶段 ------------ BEGIN------------ */
    /* 01. 判断及增加环境变量 */
    /* 02. 创建文件系统目录并挂载相关的文件系统 */
    /* 03. 重定向输入输出/内核Log系统 */
    /* 04. 挂在一些分区设备 */
    /* 05. 完成SELinux相关工作 */
    /* 06. is_first_stage 收尾 */
    /* ------------ 第一阶段 ------------- END ------------ */
    
    /* ------------ 第二阶段 ------------ BEGIN------------ */
    /* 01. 初始化属性域 */
    /* 02. 清空环境变量 */
    /* 03. 完成SELinux相关工作 */
    /* 04. 创建epoll句柄 */
    /* 05. 装载子进程信号处理器 */
    /* 06. 启动属性服务*/
    const BuiltinFunctionMap function_map;         // system/core/init/builtins.cpp,定义Action中的function_map_为BuiltinFuntionMap
    Action::set_function_map(&function_map);       // 在Action中保存function_map对象,记录了命令与函数之间的对应关系
    /* 07. 匹配命令和函数之间对应关系 */
    /* ------------ 第二阶段 ------------ END ------------ */
    ... ...
}

至此,init进程的准备工作执行完毕, 接下来就要开始解析init.rc文件了。

第三阶段(init.rc)

解析init.rc

int main(int argc, char** argv) {
    /* ------------ 第一阶段 ------------ BEGIN------------ */
    /* 01. 判断及增加环境变量 */
    /* 02. 创建文件系统目录并挂载相关的文件系统 */
    /* 03. 重定向输入输出/内核Log系统 */
    /* 04. 挂在一些分区设备 */
    /* 05. 完成SELinux相关工作 */
    /* 06. is_first_stage 收尾 */
    /* ------------ 第一阶段 ------------- END ------------ */
    
    /* ------------ 第二阶段 ------------ BEGIN------------ */
    /* 01. 初始化属性域 */
    /* 02. 清空环境变量 */
    /* 03. 完成SELinux相关工作 */
    /* 04. 创建epoll句柄 */
    /* 05. 装载子进程信号处理器 */
    /* 06. 启动属性服务*/
    /* 07. 匹配命令和函数之间对应关系 */
    /* ------------ 第二阶段 ------------ END ------------ */
    
    /* ------------ 第三阶段 ----------- BEGIN------------ */
    ActionManager& am = ActionManager::GetInstance();
    ServiceManager& sm = ServiceManager::GetInstance();
    Parser& parser = Parser::GetInstance();                                          // 构造解析文件用的parser对象

    // 为一些类型的关键字,创建特定的parser
    parser.AddSectionParser("service", std::make_unique<ServiceParser>(&sm));        // 增加ServiceParser为一个section,对应name为service
    parser.AddSectionParser("on", std::make_unique<ActionParser>(&am));              // 增加ActionParser为一个section,对应name为action
    parser.AddSectionParser("import", std::make_unique<ImportParser>(&parser));      // 增加ActionParser为一个section,对应name为import
    
    std::string bootscript = GetProperty("ro.boot.init_rc", "");                     // 判断是否存在bootscript

    // 如果没有bootscript,则解析init.rc文件
    if (bootscript.empty()) {                                                        // 8.0引入
        parser.ParseConfig("/init.rc");                                              // 开始实际的解析过程
        parser.set_is_system_etc_init_loaded(
                parser.ParseConfig("/system/etc/init"));
        parser.set_is_vendor_etc_init_loaded(
                parser.ParseConfig("/vendor/etc/init"));
        parser.set_is_odm_etc_init_loaded(parser.ParseConfig("/odm/etc/init"));
    } else {
        // 若存在bootscript, 则解析bootscript
        parser.ParseConfig(bootscript);
        parser.set_is_system_etc_init_loaded(true);
        parser.set_is_vendor_etc_init_loaded(true);
        parser.set_is_odm_etc_init_loaded(true);
    }
    ... ...
}

如果没有定义bootScript,那么init进程还是会解析init.rc文件。init.rc文件是在init进程启动后执行的启动脚本,文件中记录着init进程需执行的操作。

此处解析函数传入的参数为“/init.rc”,解析的是运行时与init进程同在根目录下的init.rc文件。该文件在编译前,定义于system/core/rootdir/init.rc中。

:sparkles: 继续往下分析main函数之前;

:sparkles: 我们先了解一下init.rc是什么,然后分析下parser解析init.rc过程;

:sparkles: 最后我们再继续跟源码!

init.rc配置文件

init.rc是一个配置文件,内部由Android初始化语言编写(Android Init Language)编写的脚本,主要包含五种类型语句:<font color=#87CEFA>Action、Command、Service、Option 和 Import</font>,在分析代码的过程中我们会详细介绍。

init.rc的配置代码在:system/core/rootdir/init.rc中。

init.rc文件是在init进程启动后执行的启动脚本,文件中记录着init进程需执行的操作。

init.rc文件大致分为两大部分:

一部分是以“on”关键字开头的动作列表(action list):

on early-init                    // Action类型语句
    # Set init and its forked children's oom_adj.     // #:注释符号
    write /proc/1/oom_score_adj -1000
    ... ...
    # Shouldn't be necessary, but sdcard won't start without it. http://b/22568628.
    mkdir /mnt 0775 root system
    ... ...
    start ueventd

Action类型语句格式:

on <trigger> [&& <trigger>]*     // 设置触发器  
   <command>  
   <command>                     // 动作触发之后要执行的命令

另一部分是以“service”关键字开头的服务列表(service list): 如 Zygote

service ueventd /sbin/ueventd    // Service类型语句
    class core
    critical
    seclabel u:r:ueventd:s0

Service类型语句格式:

service <name> <pathname> [ <argument> ]*   // <service的名字><执行程序路径><传递参数>  
   <option>                                 // option是service的修饰词,影响什么时候、如何启动services  
   <option>  
   ...

借助系统环境变量或Linux命令,

动作列表用于创建所需目录,以及为某些特定文件指定权限;

服务列表用来记录init进程需要启动的一些子进程,如上面代码所示,service关键字后的第一个字符串表示服务(子进程)的名称,第二个字符串表示服务的执行路径。

值得一提的是从Android 7.0后的源码,对init.rc文件进行了拆分,每个服务一个rc文件。我们要分析的zygote服务的启动脚本则在init.zygoteXX.rc中定义。

在init.rc的import段我们看到如下代码:

import /init.${ro.zygote}.rc     // 可以看出init.rc不再直接引入一个固定的文件,而是根据属性ro.zygote的内容来引入不同的文件

从android5.0开始,android开始支持64位的编译,zygote本身也就有了32位和64位的区别,所以在这里用ro.zygote属性来控制启动不同版本的zygote进程。

init.rc位于/system/core/rootdir下。在这个路径下还包括四个关于zygote的rc文件。分别是init.zygote32.rc,init.zygote32_64.rc,init.zygote64.rc,init.zygote64_32.rc,由硬件决定调用哪个文件。

这里拿32位处理器为例,init.zygote32.rc的代码如下所示:

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server
    class main                                              # class是一个option,指定zygote服务的类型为main
    priority -20
    user root
    group root readproc
    socket zygote stream 660 root system                    # socket关键字表示一个option,创建一个名为dev/socket/zygote,类型为stream,权限为660的socket
    onrestart write /sys/android_power/request_state wake   # onrestart是一个option,说明在zygote重启时需要执行的command
    onrestart write /sys/power/state on
    onrestart restart audioserver
    onrestart restart cameraserver
    onrestart restart media
    onrestart restart netd
    onrestart restart wificond
    writepid /dev/cpuset/foreground/tasks

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server语句解读:

在Init.zygote32.rc中,定义了一个zygote服务:zygote,由关键字service告诉init进程创建一个名为zygote的进程,这个进程要执行的程序是:/system/bin/app_process,给这个进程四个参数:

-Xzygote:该参数将作为虚拟机启动时所需的参数

/system/bin:代表虚拟机程序所在目录

--zygote:指明以ZygoteInit.java类中的main函数作为虚拟机执行入口

--start-system-server:告诉Zygote进程启动systemServer进程

init.rc解析过程

回顾解析init.rc的代码:

int main(int argc, char** argv) {
    ... ...
    ActionManager& am = ActionManager::GetInstance();
    ServiceManager& sm = ServiceManager::GetInstance();
    Parser& parser = Parser::GetInstance();                                          // 构造解析文件用的parser对象

    parser.AddSectionParser("service", std::make_unique<ServiceParser>(&sm));        // 增加ServiceParser为一个section,对应name为service
    parser.AddSectionParser("on", std::make_unique<ActionParser>(&am));              // 增加ActionParser为一个section,对应name为action
    parser.AddSectionParser("import", std::make_unique<ImportParser>(&parser));      // 增加ActionParser为一个section,对应name为import
    std::string bootscript = GetProperty("ro.boot.init_rc", "");
    if (bootscript.empty()) {
        parser.ParseConfig("/init.rc");                                              // 开始实际的解析过程
        parser.set_is_system_etc_init_loaded(
                parser.ParseConfig("/system/etc/init"));
        parser.set_is_vendor_etc_init_loaded(
                parser.ParseConfig("/vendor/etc/init"));
        parser.set_is_odm_etc_init_loaded(parser.ParseConfig("/odm/etc/init"));
    } else {
        parser.ParseConfig(bootscript);
        parser.set_is_system_etc_init_loaded(true);
        parser.set_is_vendor_etc_init_loaded(true);
        parser.set_is_odm_etc_init_loaded(true);
    }
    ... ...
}

Parse

我们发现在解析前,使用了Parser类(在init目录下的 <font color=#00FFFF>init_parser.h</font> 中定义),构造了parser对象:

Parser& parser = Parser::GetInstance();                // 构造解析文件用的parser对象

初始化ServiceParser用来解析 “service”块,ActionParser用来解析"on"块,ImportParser用来解析“import”块,“import”是用来引入一个init配置文件,来扩展当前配置的。

parser.AddSectionParser("service", std::make_unique<ServiceParser>(&sm));        // 增加ServiceParser为一个section,对应name为service
    parser.AddSectionParser("on", std::make_unique<ActionParser>(&am));              // 增加ActionParser为一个section,对应name为action
    parser.AddSectionParser("import", std::make_unique<ImportParser>(&parser));      // 增加ActionParser为一个section,对应name为import

/system/core/init/readme.txt中对init文件中的所有关键字做了介绍,主要包含了Actions, Commands, Services, Options, and Imports等,可自行学习解读。

ParseConfig

下面就是分析解析过程了:parser.ParseConfig("/init.rc") (函数定义于system/core/init/init_parser.cpp中)

bool Parser::ParseConfig(const std::string& path) {
    if (is_dir(path.c_str())) {              // 判断传入参数是否为目录地址
        return ParseConfigDir(path);         // 递归目录,最终还是靠ParseConfigFile来解析实际的文件
    }
    return ParseConfigFile(path);            // 传入参数为文件地址
}

先来看看ParseConfigDir函数:

bool Parser::ParseConfigDir(const std::string& path) {
    LOG(INFO) << "Parsing directory " << path << "...";
    std::unique_ptr<DIR, int(*)(DIR*)> config_dir(opendir(path.c_str()), closedir);
    if (!config_dir) {
        PLOG(ERROR) << "Could not import directory '" << path << "'";
        return false;
    }
    // 递归目录,得到需要处理的文件
    dirent* current_file;
    std::vector<std::string> files;
    while ((current_file = readdir(config_dir.get()))) {
        // Ignore directories and only process regular files.
        if (current_file->d_type == DT_REG) {
            std::string current_path =
                android::base::StringPrintf("%s/%s", path.c_str(), current_file->d_name);
            files.emplace_back(current_path);
        }
    }
    // Sort first so we load files in a consistent order (bug 31996208)
    std::sort(files.begin(), files.end());
    for (const auto& file : files) {
        // 容易看出,最终仍是调用ParseConfigFile
        if (!ParseConfigFile(file)) {
            LOG(ERROR) << "could not import file '" << file << "'";
        }
    }
    return true;
}

接下来就重点分析ParseConfigFile():

bool Parser::ParseConfigFile(const std::string& path) {
    ... ...
    android::base::Timer t;
    std::string data;
    std::string err;
    if (!ReadFile(path, &data, &err)) {     // 读取路径指定文件中的内容,保存为字符串形式
        LOG(ERROR) << err;
        return false;
    }
    ... ...
    ParseData(path, data);                  // 解析获取的字符串
    ... ...
    return true;
}

ParseConfigFile只是读取文件的内容并转换为字符串,实际的解析工作被交付给ParseData。

ParseData

ParseData函数定义于system/core/init/init_parser.cpp中,负责根据关键字解析出服务和动作。动作与服务会以链表节点的形式注册到service_list与action_list中,service_list与action_list是init进程中声明的全局结构体。

跟踪ParseData():

void Parser::ParseData(const std::string& filename, const std::string& data) {
    //TODO: Use a parser with const input and remove this copy
    // copy一波数据
    std::vector<char> data_copy(data.begin(), data.end());
    data_copy.push_back('\0');

    // 解析用的结构体
    parse_state state;
    state.line = 0;
    state.ptr = &data_copy[0];
    state.nexttoken = 0;

    SectionParser* section_parser = nullptr;
    std::vector<std::string> args;

    for (;;) {
        switch (next_token(&state)) {                // next_token以行为单位分割参数传递过来的字符串,初始没有分割符时,最先走到T_TEXT分支
        case T_EOF:
            if (section_parser) {
                section_parser->EndSection();        // 解析结束
            }
            return;
        case T_NEWLINE:
            state.line++;
            if (args.empty()) {
                break;
            }

            ... ...

            // 在前文创建parser时,我们为service,on,import定义了对应的parser
            // 这里就是根据第一个参数,判断是否有对应的parser
            if (section_parsers_.count(args[0])) {           
                if (section_parser) {
                    // 结束上一个parser的工作,将构造出的对象加入到对应的service_list与action_list中
                    section_parser->EndSection();            
                }
                // 获取参数对应的parser
                section_parser = section_parsers_[args[0]].get();
                std::string ret_err;
                // 调用实际parser的ParseSection函数
                if (!section_parser->ParseSection(std::move(args), filename, state.line, &ret_err)) {
                    LOG(ERROR) << filename << ": " << state.line << ": " << ret_err;
                    section_parser = nullptr;
                }
            } else if (section_parser) {
                std::string ret_err;
                /* 
                 * 如果第一个参数不是service,on,import
                 * 则调用前一个parser的ParseLineSection函数
                 * 这里相当于解析一个参数块的子项
                 */
                if (!section_parser->ParseLineSection(std::move(args), state.line, &ret_err)) {
                    LOG(ERROR) << filename << ": " << state.line << ": " << ret_err;
                }
            }
            // 清空本次解析的数据
            args.clear();      
            break;
        case T_TEXT:
            // 将本次解析的内容写入到args中
            args.emplace_back(state.text);    
            break;
        }
    }
}

上面的代码看起来比较复杂,但实际上就是面向对象,根据不同的关键字,使用不同的parser对象进行解析。

至此,init.rc解析完!Ok,别忘了,main函数还没有分析完,继续往下看。

第四阶段

向执行队列中添加其他action

int main(int argc, char** argv) {
    /* ------------ 第一阶段 ------------ BEGIN------------ */
    /* 01. 判断及增加环境变量 */
    /* 02. 创建文件系统目录并挂载相关的文件系统 */
    /* 03. 重定向输入输出/内核Log系统 */
    /* 04. 挂在一些分区设备 */
    /* 05. 完成SELinux相关工作 */
    /* 06. is_first_stage 收尾 */
    /* ------------ 第一阶段 ------------- END ------------ */
    
    /* ------------ 第二阶段 ------------ BEGIN------------ */
    /* 01. 初始化属性域 */
    /* 02. 清空环境变量 */
    /* 03. 完成SELinux相关工作 */
    /* 04. 创建epoll句柄 */
    /* 05. 装载子进程信号处理器 */
    /* 06. 启动属性服务*/
    /* 07. 匹配命令和函数之间对应关系 */
    /* ------------ 第二阶段 ------------ END ------------ */
    
    /* ------------ 第三阶段 ----------- BEGIN------------ */
    /* init解析 */
    /* ------------ 第三阶段 -----------  END ------------ */
    
    /* ------------ 第四阶段 ----------- BEGIN------------ */    
    // 通过am对命令执行顺序进行控制
    // ActionManager& am = ActionManager::GetInstance();
    
    // init执行命令触发器主要分为early-init,init,late-init,boot等
    am.QueueEventTrigger("early-init");          // 添加触发器early-init,执行on early-init内容

    // Queue an action that waits for coldboot done so we know ueventd has set up all of /dev...
    am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done");
    // ... so that we can start queuing up actions that require stuff from /dev.
    am.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng");
    am.QueueBuiltinAction(set_mmap_rnd_bits_action, "set_mmap_rnd_bits");
    am.QueueBuiltinAction(set_kptr_restrict_action, "set_kptr_restrict");
    am.QueueBuiltinAction(keychord_init_action, "keychord_init");
    am.QueueBuiltinAction(console_init_action, "console_init");

    // Trigger all the boot actions to get us started.
    am.QueueEventTrigger("init");                // 添加触发器init,执行on init内容,主要包括创建/挂在一些目录,以及symlink等

    // Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random
    // wasn't ready immediately after wait_for_coldboot_done
    am.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng");

    // Don't mount filesystems or start core system services in charger mode.
    std::string bootmode = GetProperty("ro.bootmode", "");
    if (bootmode == "charger") {
        am.QueueEventTrigger("charger");         // on charger阶段
    } else {
        am.QueueEventTrigger("late-init");       // 非充电模式添加触发器last-init
    }

    // Run all property triggers based on current state of the properties.
    am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers");
}

其余工作

继续分析main函数:

int main(int argc, char** argv) {
    /* ------------ 第一阶段 ------------ BEGIN------------ */
    /* 01. 判断及增加环境变量 */
    /* 02. 创建文件系统目录并挂载相关的文件系统 */
    /* 03. 重定向输入输出/内核Log系统 */
    /* 04. 挂在一些分区设备 */
    /* 05. 完成SELinux相关工作 */
    /* 06. is_first_stage 收尾 */
    /* ------------ 第一阶段 ------------- END ------------ */
    
    /* ------------ 第二阶段 ------------ BEGIN------------ */
    /* 01. 初始化属性域 */
    /* 02. 清空环境变量 */
    /* 03. 完成SELinux相关工作 */
    /* 04. 创建epoll句柄 */
    /* 05. 装载子进程信号处理器 */
    /* 06. 启动属性服务*/
    /* 07. 匹配命令和函数之间对应关系 */
    /* ------------ 第二阶段 ------------ END ------------ */
    
    /* ------------ 第三阶段 ----------- BEGIN------------ */
    /* init解析 */
    /* ------------ 第三阶段 -----------  END ------------ */
    
    /* ------------ 第四阶段 ----------- BEGIN------------ */
    /* 01. 向执行队列中添加其他action */
    /* 02. 其余工作 */
    while (true) {
    // 判断是否有事件需要处理
        // By default, sleep until something happens.
        int epoll_timeout_ms = -1;

        if (do_shutdown && !shutting_down) {
            do_shutdown = false;
            if (HandlePowerctlMessage(shutdown_command)) {
                shutting_down = true;
            }
        }

        if (!(waiting_for_prop || sm.IsWaitingForExec())) {
            am.ExecuteOneCommand();                    // 依次执行每个action中携带command对应的执行函数
        }
        if (!(waiting_for_prop || sm.IsWaitingForExec())) {
            if (!shutting_down) restart_processes();   // 重启一些挂掉的进程

            // If there's a process that needs restarting, wake up in time for that.
            if (process_needs_restart_at != 0) {       // 进程重启相关逻辑
                epoll_timeout_ms = (process_needs_restart_at - time(nullptr)) * 1000;
                if (epoll_timeout_ms < 0) epoll_timeout_ms = 0;
            }

            // If there's more work to do, wake up again immediately.
            if (am.HasMoreCommands()) epoll_timeout_ms = 0;      // 有action待处理,不等待
        }

        epoll_event ev;
        // 没有事件到来的话,最多阻塞timeout时间
        int nr = TEMP_FAILURE_RETRY(epoll_wait(epoll_fd, &ev, 1, epoll_timeout_ms));
        if (nr == -1) {
            PLOG(ERROR) << "epoll_wait failed";
        } else if (nr == 1) {
            //有事件到来,执行对应处理函数
            //根据上文知道,epoll句柄(即epoll_fd)主要监听子进程结束,及其它进程设置系统属性的请求
            ((void (*)()) ev.data.ptr)();
        }
    } 
} // end main

至此,Init.cpp的main函数分析完毕!init进程已经启动完成,一些重要的服务如core服务和main服务也都启动起来,并启动了zygote(/system/bin/app_process64)进程,zygote初始化时会创建虚拟机,启动systemserver等。

参考Blog

01. https://www.cnblogs.com/pepsi...

02. https://blog.csdn.net/gaugame...

03. http://qiangbo.space/2016-10-...


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK