73

Java8 Stream的总结

 6 years ago
source link: https://juejin.im/post/5a8a71506fb9a0633d71e2c9
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

一. Stream的特性

Stream是Java 8新增的接口,Stream可以认为是一个高级版本的 Iterator。它代表着数据流,流中的数据元素的数量可以是有限的,也可以是无限的。

Stream跟Iterator的差别是

  • 无存储:Stream是基于数据源的对象,它本身不存储数据元素,而是通过管道将数据源的元素传递给操作。
  • 函数式编程:对Stream的任何修改都不会修改背后的数据源,比如对Stream执行filter操作并不会删除被过滤的元素,而是会产生一个不包含被过滤元素的新的Stream。
  • 延迟执行:Stream的操作由零个或多个中间操作(intermediate operation)和一个结束操作(terminal operation)两部分组成。只有执行了结束操作,Stream定义的中间操作才会依次执行,这就是Stream的延迟特性。
  • 可消费性:Stream只能被“消费”一次,一旦遍历过就会失效。就像容器的迭代器那样,想要再次遍历必须重新生成一个新的Stream。

二. Java 8新增的函数式接口

Stream的操作是建立在函数式接口的组合之上的。Java8中新增的函数式接口都在java.util.function包下。这些函数式接口可以有多种分类方式。

Java 8函数式接口的分类.png

Java 8函数式接口第二种分类.png

2.1 Function

Function是从T到R的一元映射函数。将参数T传递给一个函数,返回R。即R = Function(T)

@FunctionalInterface
public interface Function<T, R> {

    /**
     * Applies this function to the given argument.
     *
     * @param t the function argument
     * @return the function result
     */
    R apply(T t);

    /**
     * Returns a composed function that first applies the {@code before}
     * function to its input, and then applies this function to the result.
     * If evaluation of either function throws an exception, it is relayed to
     * the caller of the composed function.
     *
     * @param <V> the type of input to the {@code before} function, and to the
     *           composed function
     * @param before the function to apply before this function is applied
     * @return a composed function that first applies the {@code before}
     * function and then applies this function
     * @throws NullPointerException if before is null
     *
     * @see #andThen(Function)
     */
    default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
        Objects.requireNonNull(before);
        return (V v) -> apply(before.apply(v));
    }

    /**
     * Returns a composed function that first applies this function to
     * its input, and then applies the {@code after} function to the result.
     * If evaluation of either function throws an exception, it is relayed to
     * the caller of the composed function.
     *
     * @param <V> the type of output of the {@code after} function, and of the
     *           composed function
     * @param after the function to apply after this function is applied
     * @return a composed function that first applies this function and then
     * applies the {@code after} function
     * @throws NullPointerException if after is null
     *
     * @see #compose(Function)
     */
    default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
        Objects.requireNonNull(after);
        return (T t) -> after.apply(apply(t));
    }

    /**
     * Returns a function that always returns its input argument.
     *
     * @param <T> the type of the input and output objects to the function
     * @return a function that always returns its input argument
     */
    static <T> Function<T, T> identity() {
        return t -> t;
    }
}
复制代码

Function默认实现了3个default方法,分别是compose、andThen和identity。

方法名 对应函数 描述
compose V=Function(ParamFunction(T)) 它体现了嵌套关系
andThen V= ParamFunction(Function(T)) 转换了嵌套的顺序
identity Function(T)=T 传递自身的函数调用

compose和andThen对于两个函数f和g来说,f.compose(g)等价于g.andThen(f)。

2.2 Predicate

Predicate是一个谓词函数,主要作为一个谓词演算推导真假值存在,返回布尔值的函数。Predicate等价于一个Function的boolean型返回值的子集。

@FunctionalInterface
public interface Predicate<T> {

    /**
     * Evaluates this predicate on the given argument.
     *
     * @param t the input argument
     * @return {@code true} if the input argument matches the predicate,
     * otherwise {@code false}
     */
    boolean test(T t);

    /**
     * Returns a composed predicate that represents a short-circuiting logical
     * AND of this predicate and another.  When evaluating the composed
     * predicate, if this predicate is {@code false}, then the {@code other}
     * predicate is not evaluated.
     *
     * <p>Any exceptions thrown during evaluation of either predicate are relayed
     * to the caller; if evaluation of this predicate throws an exception, the
     * {@code other} predicate will not be evaluated.
     *
     * @param other a predicate that will be logically-ANDed with this
     *              predicate
     * @return a composed predicate that represents the short-circuiting logical
     * AND of this predicate and the {@code other} predicate
     * @throws NullPointerException if other is null
     */
    default Predicate<T> and(Predicate<? super T> other) {
        Objects.requireNonNull(other);
        return (t) -> test(t) && other.test(t);
    }

    /**
     * Returns a predicate that represents the logical negation of this
     * predicate.
     *
     * @return a predicate that represents the logical negation of this
     * predicate
     */
    default Predicate<T> negate() {
        return (t) -> !test(t);
    }

    /**
     * Returns a composed predicate that represents a short-circuiting logical
     * OR of this predicate and another.  When evaluating the composed
     * predicate, if this predicate is {@code true}, then the {@code other}
     * predicate is not evaluated.
     *
     * <p>Any exceptions thrown during evaluation of either predicate are relayed
     * to the caller; if evaluation of this predicate throws an exception, the
     * {@code other} predicate will not be evaluated.
     *
     * @param other a predicate that will be logically-ORed with this
     *              predicate
     * @return a composed predicate that represents the short-circuiting logical
     * OR of this predicate and the {@code other} predicate
     * @throws NullPointerException if other is null
     */
    default Predicate<T> or(Predicate<? super T> other) {
        Objects.requireNonNull(other);
        return (t) -> test(t) || other.test(t);
    }

    /**
     * Returns a predicate that tests if two arguments are equal according
     * to {@link Objects#equals(Object, Object)}.
     *
     * @param <T> the type of arguments to the predicate
     * @param targetRef the object reference with which to compare for equality,
     *               which may be {@code null}
     * @return a predicate that tests if two arguments are equal according
     * to {@link Objects#equals(Object, Object)}
     */
    static <T> Predicate<T> isEqual(Object targetRef) {
        return (null == targetRef)
                ? Objects::isNull
                : object -> targetRef.equals(object);
    }
}
复制代码

Predicate的默认方法是and、negate、or。

2.3 Consumer

Consumer是从T到void的一元函数,接受一个入参但不返回任何结果的操作。

@FunctionalInterface
public interface Consumer<T> {

    /**
     * Performs this operation on the given argument.
     *
     * @param t the input argument
     */
    void accept(T t);

    /**
     * Returns a composed {@code Consumer} that performs, in sequence, this
     * operation followed by the {@code after} operation. If performing either
     * operation throws an exception, it is relayed to the caller of the
     * composed operation.  If performing this operation throws an exception,
     * the {@code after} operation will not be performed.
     *
     * @param after the operation to perform after this operation
     * @return a composed {@code Consumer} that performs in sequence this
     * operation followed by the {@code after} operation
     * @throws NullPointerException if {@code after} is null
     */
    default Consumer<T> andThen(Consumer<? super T> after) {
        Objects.requireNonNull(after);
        return (T t) -> { accept(t); after.accept(t); };
    }
}
复制代码

Consumer的默认方法是andThen。

2.4 Supplier

Supplier是表示结果的供应者。

@FunctionalInterface
public interface Supplier<T> {

    /**
     * Gets a result.
     *
     * @return a result
     */
    T get();
}
复制代码

Supplier的用法:

        Supplier<String> supplier = new Supplier<String>() {
            @Override
            public String get() {
                return "hello suppiler";
            }
        };
        System.out.println(supplier.get());
复制代码
Supplier<User> userSupplier = User::new;
userSupplier.get();   // new User
复制代码

Java 8新增了CompletableFuture,它的很多方法的入参都用到了Supplier。

三. Stream用法

Stream操作.png

3.1 Stream的创建

Java 8有多种方式来创建Stream:

  • 通过集合的stream()方法或者parallelStream()
  • 使用流的静态方法,比如Stream.of(Object[]), IntStream.range(int, int) 或者 Stream.iterate(Object, UnaryOperator)。
  • 通过Arrays.stream(Object[])方法。
  • BufferedReader.lines()从文件中获得行的流。
  • Files类的操作路径的方法,如list、find、walk等。
  • 随机数流Random.ints()。
  • 其它一些类提供了创建流的方法,如BitSet.stream(), Pattern.splitAsStream(java.lang.CharSequence), 和 JarFile.stream()。

其实最终都是依赖底层的StreamSupport类来完成Stream创建。

3.2 中间操作

中间操作又可以分为无状态的(Stateless)和有状态的(Stateful),无状态中间操作是指元素的处理不受前面元素的影响,而有状态的中间操作必须等到所有元素处理之后才知道最终结果。

Stream的中间操作只是一种标记,只有执行了结束操作才会触发实际计算。 熟悉RxJava、Scala的同学可以看到,Stream中间操作的各个方法在RxJava、Scala中都可以找到熟悉的身影。

3.3 结束操作

3.3.1 短路操作

短路操作是指不用处理全部元素就可以返回结果。短路操作必须一个元素处理一次。

3.3.1 非短路操作

非短路操作可以批量处理数据,但是需要处理完全部元素才会返回结果。

四. 并行流

在创建Stream时,默认是创建串行流。但是可以使用parallelStream()来创建并行流或者parallel()将串行流转换成并行流。并行流也可以通过sequential()转换成串行流。

Java 8 Stream的并行流,本质上还是使用Fork/Join模型。

在Java开发中,如果使用了Java 8,那么强烈建议使用Stream。因为Stream的每个操作都可以依赖Lambda表达式,它是一种声明式的数据处理方式,并且Stream提高了数据处理效率和开发效率。


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK