60

笔记: 五次方程的微分方程解法

 6 years ago
source link: https://zhuanlan.zhihu.com/p/32404214
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

笔记: 五次方程的微分方程解法

数学话题下的优秀答主

我以前一直很奇怪为什么三次方程求根公式有两部分构成,四次三个部分...

如果五次是不是四个部分? 这意味着什么? 看起来很像线性结构?

最近看到一种很有趣的五次方程解法.

一定程度上解决了我的这个疑惑

求解五次方程 x5−5x3+5x−3=0

这个方程不可因式分解, 其伽罗瓦群是亚循环群 M20

考虑一般情况:

x5−5x3+5x−t=0

转化为同解微分方程

25 \left(4-t^2\right) x''(t)-25 t x'(t)+x(t)=0

一个简单的线性常微分,解之得:

x(t)=c_1 \cos \left(\frac{1}{5} \arcsin\frac{t}{2}\right)-c_2 \sin \left(\frac{1}{5} \arcsin\frac{t}{2}\right)

所以五个根就是:

\begin{cases} 2 \sin \left(\frac{1}{5} \sin ^{-1}\left(\frac{t}{2}\right)\right) \\ -\frac{1}{2} \left(1+\sqrt{5}\right) \sin \left(\frac{1}{5} \sin ^{-1}\left(\frac{t}{2}\right)\right)-\sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \cos \left(\frac{1}{5} \sin ^{-1}\left(\frac{t}{2}\right)\right) \\ \sqrt{\frac{1}{2} \left(5-\sqrt{5}\right)} \cos \left(\frac{1}{5} \sin ^{-1}\left(\frac{t}{2}\right)\right)-\frac{1}{2} \left(1+\sqrt{5}\right) \sin \left(\frac{1}{5} \sin ^{-1}\left(\frac{t}{2}\right)\right) \\ -\frac{1}{2} \left(1-\sqrt{5}\right) \sin \left(\frac{1}{5} \sin ^{-1}\left(\frac{t}{2}\right)\right)-\sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} \cos \left(\frac{1}{5} \sin ^{-1}\left(\frac{t}{2}\right)\right) \\ \sqrt{\frac{1}{2} \left(5+\sqrt{5}\right)} \cos \left(\frac{1}{5} \sin ^{-1}\left(\frac{t}{2}\right)\right)-\frac{1}{2} \left(1-\sqrt{5}\right) \sin \left(\frac{1}{5} \sin ^{-1}\left(\frac{t}{2}\right)\right) \\ \end{cases}

这就很有趣了...这个同解微分方程怎么得到的呢?

我找了下参考文献

  1. J. Cockle: Sketch of a Theory of Transcendental Roots, Phil. Mag. XX, 145 (1860)
  2. J. Cockle: On Transcendental and Algebraic Solution, Phil. Mag. XXIII, 135 (1862)
  3. R. Harley: On the solution of the transcendental solution of algebraic equations, Quart. J. pure appl. Math. V, 337 (1862)

以下是Cockle 与 Harley 在 1860 年左右完成的计算...

\small{\color{#0AF}{顶级数学家的计算力自己看着办吧...}}


让我们从布林杰拉德正规式开始计算

因为所有的五次方程都能转化为布林杰拉德正规式:数学中的暴力美学

x^5-x+t=0\tag1

我们把 x 看成 t 的函数,也就是考虑函数方程:

x(t)^5-x(t)+t=0\tag2

知乎你这个对齐能不能再烂一点

我们希望它同解于一个微分方程:

a_1 x''''(t)+a_2 x'''(t)+a_3 x''(t)+a_4 x'(t)+a_5 x(t)+a_6=0\tag3

接下来我们对(2)式反复求导

\begin{align} x'(t)=& \frac{1}{1-5 x(t)^4} \tag4\\ x''(t)=& -\frac{20 x(t)^3 x'(t)^2}{5 x(t)^4-1} \\ x'''(t)=& -\frac{60 \left(x(t)^2 x'(t)^3+x(t)^3 x'(t) x''(t)\right)}{5 x(t)^4-1} \\ x''''(t)=& -\frac{20 \left(3 x(t)^3 x''(t)^2+6 x(t) x'(t)^4+4 x(t)^3 x^{(3)}(t) x'(t)+18x(t)^2 x'(t)^2 x''(t)\right)}{5 x(t)^4-1} \\ \end{align}

然后把(4)式代入(3)式

\begin{align} &\ a_1 \left(-\frac{120000 x(t)^9}{\left(1-5 x(t)^4\right)^4 \left(5 x(t)^4-1\right)^3}+\frac{12000 x(t)^5}{\left(1-5 x(t)^4\right)^4 \left(5 x(t)^4-1\right)^2}-\frac{120 x(t)}{\left(1-5 x(t)^4\right)^4 \left(5 x(t)^4-1\right)}\right)\\ &+a_2 \left(\frac{1200 x(t)^6}{\left(1-5 x(t)^4\right)^3 \left(5 x(t)^4-1\right)^2}-\frac{60 x(t)^2}{\left(1-5 x(t)^4\right)^3 \left(5 x(t)^4-1\right)}\right)\\ &-a_3\frac{20 x(t)^3}{\left(1-5 x(t)^4\right)^2 \left(5 x(t)^4-1\right)}+a_4\frac{1}{1-5 x(t)^4}+a_5 x(t)+a_6=0\tag5\\ \end{align}

然后又是很困难的一步

x(t)^5=x(t)-t=0\tag2

重新代入(5)式中,反复代入直到没有任何项次数高于5

\begin{align} &\quad\ 5 \left(5 a_6 t \left(3125 t^4+5079\right)-75 t \left(1095 a_5 t+71 a_4\right)+1024 a_3\right) x(t)^3\tag6\\ &+5 \left(5 t \left(25 t \left(5 t \left(5 t \left(5 a_5 t+a_4-18 a_6\right)-4 a_3\right)+36 a_2\right)-2520 a_1+5079 a_5\right)+819 a_4-3277 a_6\right) x(t)^4\\ &+5 \left(5 t \left(25 t \left(1135 a_5 t+111 a_4-657 a_6\right)-1024 a_3\right)+3072 a_2\right) x(t)^2\\ &+\left(-25 t \left(5 t \left(25 t \left(221 a_5 t+29 a_4-227 a_6\right)-384 a_3\right)+2112 a_2\right)+73920 a_1-16384 a_5\right) x(t)\\ &+5 t \left(125 t \left(t \left(5 t \left(90 a_5 t+14 a_4-131 a_6\right)-44 a_3\right)+60 a_2\right)-14760 a_1+3277 a_5\right)+a_4+a_6=0 \end{align}

然后比较系数呗...

\begin{align} a_1&\to -\frac{a_3 \left(256-3125 t^4\right)}{73125 t^2} \\ a_2&\to \frac{50 a_3 t}{117} \\ a_4&\to \frac{17 a_3}{39 t} \\ a_5&\to -\frac{77 a_3}{4875 t^2} \\ a_6&\to 0 \\ \end{align}\tag7

注意到第3项系数是求不出的, 这意味着线性无关(无关紧要)直接设为1即可.

然后代回(3)式得

-\frac{77 a_3 x(t)}{4875 t^2}-\frac{a_3 \left(256-3125 t^4\right) x^{(4)}(t)}{73125 t^2}+\frac{50}{117} a_3 t x^{(3)}(t)+a_3 x''(t)+\frac{17 a_3 x'(t)}{39 t}=0\tag8

\small{于是我们成功的求出了\color\red{同解微分方程!}}

然后求解这个方程...不说了太长了

实验代码:

eqn=x[t]^5-x[t]+t==0;
diffeqn=Total@Table[Subscript[a,i] Derivative[5-i][x][t],{i,1,5}] +Subscript[a,6]==0
deriv=Flatten[Table[Solve[D[eqn,{t,k}],D[x[t],{t,k}]],{k,1,4}]]
algeqn=Expand[diffeqn//. deriv]
expr=FixedPoint[Collect[#,x@t]/.x[t]^i_/;i>4:>(x[t]-t) x[t]^(i-5)&,Numerator@Together[Subtract@@algeqn]];
FullSimplify[expr==0]
var=Array[Subscript[a,#]&,6];
coe=Solve[CoefficientList[expr,x[t]]==0//Thread,var]
diffeq=diffeqn//.coe
sol=First@DSolve[diffeq,x@t,t];
approximation=sol/.HoldPattern@HypergeometricPFQ[w__]->1
eqnapprox=eqn/.approximation
system=(#1==0&)/@Take[CoefficientList[eqnapprox[[1]],t],4]
coeC=Solve[system,C/@Range@4]
solfinal=sol/.coeC
Block[{rho=RandomReal[1,WorkingPrecision->16]},eqn/.solfinal]

软件计算时间大概一分钟不到吧...

找了一早上论文....

看着论文又推了一下午...

累死了看电影去了...


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK