

精通协程的必会十一个高级技巧
source link: http://www.rousetime.com/2023/11/06/%E7%B2%BE%E9%80%9A%E5%8D%8F%E7%A8%8B%E7%9A%84%E5%BF%85%E4%BC%9A%E5%8D%81%E4%B8%80%E4%B8%AA%E9%AB%98%E7%BA%A7%E6%8A%80%E5%B7%A7/
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

在Android应用开发中,协程已经成为异步编程的首选工具之一。它使并发任务管理变得更加容易,但它的强大功能远不止于此。在本文中,我们将探讨协程的高级技巧,帮助您更好地处理复杂的并发需求,提高性能和可维护性。
协程是Kotlin的一项强大特性,它使并发编程更加直观、简单。它允许我们将异步操作表达为顺序代码,避免了回调地狱和线程管理的复杂性。但协程不仅仅是一个基本的异步工具,它还具备许多高级功能,可以优化您的应用程序的性能和可维护性。
让我们更详细地探讨每一个知识点,包括原理和具体用法。
协程的并发限制
在某些情况下,限制同时运行的协程数量是必要的,以控制并发操作。这有助于避免系统资源被过度消耗,防止过多的任务同时执行。这可以通过使用 Semaphore
来实现,Semaphore
是一种计数信号,它允许一定数量的协程同时访问临界区。
Semaphore
维护一个内部计数器,每次协程进入临界区时,计数器减少,每次离开时,计数器增加。如果计数器为零,后续尝试进入临界区的协程将被阻塞,直到有其他协程离开。
以下是一个使用 Semaphore
来限制同时运行的协程数量的示例:
import kotlinx.coroutines.*
import java.util.concurrent.Semaphore
val semaphore = Semaphore(3) // 允许同时运行的协程数
runBlocking {
repeat(10) {
launch {
semaphore.acquire() // 获取信号
// 执行需要限制并发的操作
delay(1000)
semaphore.release() // 释放信号
}
}
}
在上面的示例中,我们创建了一个 Semaphore
,允许同时运行的协程数量为3。每个协程在执行需要限制并发的操作之前,使用 semaphore.acquire()
获取信号,执行完毕后使用 semaphore.release()
释放信号。
这有助于确保最多只有3个协程可以同时执行需要限制并发的操作。
协程的异常处理策略
在协程中,异常处理是至关重要的,因为异步操作可能会失败或抛出异常。合适的异常处理策略有助于应对各种错误情况,包括记录错误、重试、回退等。在协程中,可以使用 try-catch
块来捕获和处理异常。
以下是一个示例,演示如何使用 try-catch
块来处理协程中的异常:
import kotlinx.coroutines.*
fun main() = runBlocking {
val job = launch {
try {
// 可能会抛出异常的操作
delay(1000)
throw Exception("Something went wrong")
} catch (e: Exception) {
// 自定义异常处理
println("Exception handled: ${e.message}")
}
}
job.join()
}
在上面的示例中,我们使用 try-catch
块来捕获协程中可能抛出的异常,并执行自定义的异常处理操作。这有助于确保即使协程中发生异常,应用程序也能够以合适的方式处理它们。
协程的超时和取消策略
在协程中,可以设置超时操作,以确保某些操作不会无限期地执行。这是一个关键的特性,以防止应用程序因为等待某些操作而变得不响应。kotlinx.coroutines
提供了 withTimeout
函数来设置操作的超时限制。如果操作在规定时间内未完成,将会抛出 TimeoutCancellationException
。
以下是一个示例,演示如何使用 withTimeout
函数来设置操作的超时限制:
import kotlinx.coroutines.*
fun main() = runBlocking {
try {
withTimeout(1000) {
// 可能耗时较长的操作
delay(2000)
}
} catch (e: TimeoutCancellationException) {
println("Operation timed out")
}
}
在上面的示例中,我们使用 withTimeout
函数来限制操作的执行时间为1秒,如果操作在规定时间内未完成,将会抛出超时异常。这有助于确保应用程序不会因为长时间等待而变得不响应。
使用SupervisorJob
在协程中,如果一个协程失败,通常会导致整个父协程及其子协程都被取消。但有时,我们希望一个协程的失败不会影响其他协程的执行,这时可以使用 SupervisorJob
。
SupervisorJob
是一种特殊的 Job
,它允许子协程失败时只取消该子协程,而不影响其他子协程或父协程。
以下是一个示例,演示如何使用 SupervisorJob
:
import kotlinx.coroutines.*
fun main() = runBlocking {
val supervisorJob = SupervisorJob()
val parentJob = launch(supervisorJob) {
val childJob1 = launch {
// 子协程1的操作
}
val childJob2 = launch {
// 子协程2的操作,可能会失败
throw Exception("Child job 2 failed")
}
}
parentJob.join()
}
在上面的示例中,我们创建了一个 SupervisorJob
作为父协程的 Job
,然后启动两个子协程。如果子协程2失败,只有该子协程会被取消,而其他协程仍然可以继续执行。这有助于构建健壮的并发系统,其中一个子协程的失败不会影响其他子协程。
数据流与协程的结合
协程可以与 Flow
结合,构建响应式数据流,用于处理数据流、实时UI更新和网络请求。Flow
是一种冷流(Cold Stream)的数据流,它允许您以异步的方式生成和消费数据。
以下是一个示例,演示如何使用 Flow
构建数据流:
import kotlinx.coroutines.*
import kotlinx.coroutines.flow.*
fun main() = runBlocking {
val flow = flow {
for (i in 1..5) {
delay(1000)
emit(i)
}
}
flow.collect { value ->
println(value)
}
}
在上面的示例中,我们创建了一个 Flow
,它会每隔1秒发射一个值。通过 collect
函数,我们订阅并消费 Flow
中的值。这可用于构建实时数据流、处理网络请求响应以及在用户界面上实时更新数据。
协程的扩展函数
扩展函数是定义在顶层的函数,它们采用接收者类型(通常是类类型)作为参数,允许您在不修改原始类的情况下添加新的函数。在协程中,您可以通过扩展函数为协程相关的类和接口添加额外的操作。在协程中,接收者类型通常是CoroutineScope、Job、Deferred等。
以下是一个示例,演示如何编写协程扩展函数:
fun Job.myOnCancellation(callback: () -> Unit) {
this.invokeOnCancellation {
callback()
}
}
// 使用自定义扩展函数
val job = CoroutineScope(Dispatchers.Default).launch {
// 协程代码
}
job.myOnCancellation {
// 在协程取消时执行的操作
}
在上面的示例中,这个扩展函数为Job
添加了myOnCancellation
函数,允许您在协程取消时执行自定义操作。
协程调度策略
协程的调度策略决定了协程在哪个线程上执行。默认情况下,协程运行在调用它们的线程上。但您可以使用 Dispatchers
对象来切换到不同的调度器,以满足应用程序的需求。例如,Dispatchers.Main
用于主线程,Dispatchers.IO
用于I/O操作。
以下是一个示例,演示如何使用 Dispatchers
来切换协程的调度器:
import kotlinx.coroutines.*
import kotlinx.coroutines.Dispatchers.IO
fun main() = runBlocking {
launch(IO) {
// 在IO线程执行操作
}
}
在上面的示例中,我们使用 launch
的第一个参数指定了协程的调度器为 Dispatchers.IO
,以便在IO线程上执行操作。这有助于将计算密集型操作和I/O操作分别分配到不同的线程上,提高了性能。
使用Channel
Channel
是一种用于协程之间通信的数据结构,它允许在不同协程之间发送和接收数据。Channel
可以实现生产者-消费者模式,其中一个协程生成数据并将其发送到通道,而另一个协程接收并处理这些数据。
以下是一个示例,演示如何使用 Channel
进行协程之间的通信:
import kotlinx.coroutines.*
import kotlinx.coroutines.channels.*
fun main() = runBlocking {
val channel = Channel<Int>()
launch {
for (i in 1..5) {
delay(1000)
channel.send(i)
}
channel.close()
}
launch {
for (value in channel) {
println(value)
}
}
}
在上面的示例中,我们创建了一个 Channel
,一个协程用于发送数据,另一个协程用于接收数据。这有助于实现协程之间的异步通信,例如在生产者协程生成数据并发送给消费者协程处理。
异步流程的状态机
在复杂的异步操作中,使用状态机模式可以管理协程的状态和流程,以确保正确的操作顺序和错误处理。状态机可以使用 when
表达式或 sealed class
来实现。
以下是一个示例,演示如何使用 sealed class
来定义不同的状态并构建异步流程的状态机:
import kotlinx.coroutines.*
import kotlinx.coroutines.flow.Flow
import kotlinx.coroutines.flow.collect
sealed class State {
object Loading : State()
data class Success(val data: List<String>) : State()
data class Error(val message: String) : State()
}
fun fetchData(): Flow<State> {
return flow {
try {
emit(State.Loading)
// 执行网络请求
val data = fetchDataFromNetwork()
emit(State.Success(data))
} catch (e: Exception) {
emit(State.Error(e.message ?: "Unknown error"))
}
}
}
fun main() = runBlocking {
val stateMachine = fetchData()
stateMachine.collect { state ->
when (state) {
is State.Loading -> println("Loading data...")
is State.Success -> println("Data loaded: ${state.data}")
is State.Error -> println("Error: ${state.message}")
}
}
}
在上面的示例中,我们使用 sealed class
来定义不同的状态,然后使用 when
表达式处理不同的状态。这有助于构建复杂的异步流程,以确保正确的操作顺序和错误处理。
协程的测试
协程的测试是确保协程的行为和错误处理正确的关键步骤。kotlinx.coroutines.test
库提供了用于测试协程的工具,例如 TestCoroutineDispatcher
和 runBlockingTest
函数。
以下是一个示例,演示如何使用 runBlockingTest
函数来测试协程中的网络请求操作:
import kotlinx.coroutines.*
import kotlinx.coroutines.test.runBlockingTest
fun performNetworkRequest(): String {
// 模拟网络请求
delay(1000)
return "Response"
}
suspend fun fetchData(): String {
return withContext(Dispatchers.IO) {
performNetworkRequest()
}
}
fun main() = runBlockingTest {
val result = fetchData()
assert(result == "Response")
}
在上面的示例中,我们使用runBlockingTest
函数来测试协程中的网络请求操作,以确保它的行为是正确的。
协程性能调优
性能是任何应用的关键因素,协程也不例外。kotlinx.coroutines
库提供了性能分析工具,帮助您诊断性能问题,找出并发瓶颈,并进行优化。
使用性能分析工具: kotlinx.coroutines库提供了性能分析工具,如kotlinx-coroutines-debug,它可以帮助您诊断性能问题。通过使用kotlinx-coroutines-debug,您可以查看协程执行的时间线,找出潜在的性能问题。
使用measureTimeMillis: Kotlin标准库提供了measureTimeMillis函数,用于测量代码块的执行时间。这对于识别性能瓶颈很有用,您可以用它来测量协程中的关键部分。
以下是一个示例,使用measureTimeMillis,来检测代码块的执行时间:
val executionTime = measureTimeMillis {
// Your code here
}
println("Execution time: $executionTime ms")
协程是一个强大的工具,它在Android应用程序的并发编程中发挥了关键作用。通过掌握协程的高级技巧,您可以更好地处理复杂的并发需求,提高性能和可维护性。希望本文中的示例和技巧能帮助您优化Android应用的异步操作,提供更好的用户体验。
android_startup: 提供一种在应用启动时能够更加简单、高效的方式来初始化组件,优化启动速度。不仅支持Jetpack App Startup的全部功能,还提供额外的同步与异步等待、线程控制与多进程支持等功能。
AwesomeGithub: 基于Github的客户端,纯练习项目,支持组件化开发,支持账户密码与认证登陆。使用Kotlin语言进行开发,项目架构是基于JetPack\&DataBinding的MVVM;项目中使用了Arouter、Retrofit、Coroutine、Glide、Dagger与Hilt等流行开源技术。
flutter_github: 基于Flutter的跨平台版本Github客户端,与AwesomeGithub相对应。
android-api-analysis: 结合详细的Demo来全面解析Android相关的知识点, 帮助读者能够更快的掌握与理解所阐述的要点。
daily_algorithm: 每日一算法,由浅入深,欢迎加入一起共勉。
Recommend
-
33
外部路由引入 RTA上配置了一条静态路由,目的网络是10.1.60.0/24,下一跳是RTF 在RTA的OSPF进程下,将配置的静态路由重发布(或者叫做翻译/路由引入)到A公司的OSPF网络中,其中引入外部路由的OSPF路由器叫做ASBR自治系统边界路由器ASBR(...
-
6
状态迁移法主要关注在测试状态转移的正确性上面。对于一个有限状态机,通过测试验证其在给定的条件内是否能够产生需要的状态变化,有没有不可达的状态和非法的状态,是否可能产生非法的状态转移等。通过构造能导致状态迁移的事件,来测试状态之间的转换。
-
10
Spring MVC框架入门到精通【必会知识点】 推荐 原创 Spring MVC属于SpringFrameWork的后续产品,已经融合在Spring Web...
-
1
2022年新消费品牌的十一个趋势预判 ...
-
3
对于从事后端开发的同学来说,线程安全问题是我们每天都需要考虑的问题。线程安全问题通俗的讲:主要...
-
5
从十一个方向分析选品 ...
-
5
AI绘画工具的出现,赋能了各个领域,让艺术创作和设计领域都有了新的灵感源泉。本文总结了AI绘图最常用的十一个领域以及描述关键词,希望对你有所帮助。
-
5
十一个顶级的商业分析模型工具(图片版)
-
6
2023年上半年中国市场折叠屏手机销量同比增长72%,折叠屏在中国已实现连续十一个季度同比正增长 | 爱活网 Evolife.cn
-
4
精通Python Pandas数据索引:高级技巧指南 作者:写代码那些事 2023-10-16 23:53:22 数据索引是数据处理的关键步骤,而Python Pandas为你提供了一系列强大的工具来进行高级数据索引操作。本教程将引领你深入探索Pa...
About Joyk
Aggregate valuable and interesting links.
Joyk means Joy of geeK