3

宾大团队开发新型基因编辑工具,可在原代细胞中实现近100%的编辑效率

 9 months ago
source link: https://www.mittrchina.com/news/detail/12357
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

麻省理工科技评论-宾大团队开发新型基因编辑工具,可在原代细胞中实现近100%的编辑效率

宾大团队开发新型基因编辑工具,可在原代细胞中实现近100%的编辑效率
基于上述设想,他和团队设计了一套多肽辅助的纯蛋白基因组编辑的 CRISPR-Cas 系统,在方便、高效、无毒性的条件下,实现了对原代细胞的基因组编辑。
280

迄今,由 RNA 引导的 CRISPR-Cas 系统已经有十多年的发展历史。期间,有许多新的技术被开发出来,并被用于生物学和医学等领域的研究中,比如,了解疾病的遗传基础、通过编程逆转疾病状态的工程细胞治疗等。

在此基础上,为了进一步落实基因组编辑技术在基础研究、细胞工程和基因治疗等领域的应用,相关领域的研究人员正在紧锣密鼓地开发更好的方法,希望能将 CRISPR-Cas 系统更有效地递送至原代细胞。

虽然已经有许多种(病毒载体、电穿孔和小分子药物等)CRISPR-Cas 系统的递送方法,但这些方法各自都存在着局限性。

具体来说,如果采用病毒式方法,病毒会不可避免地被整合到人的基因组,且会永远和人类的细胞一同存在,这会导致诸多安全问题。比如,若病毒载入的位点影响人类的抑癌基因,可能导致细胞发展为癌细胞;若病毒插入的位点不适合基因的表达,会造成低效率的基因编辑。并且,这种方法对载体的大小也有限制,无法包裹那些较大的载体。

如果采用电穿孔法,即先通过高电压击穿细胞膜,再将 CRISPR 的载体导入细胞中,会给细胞的活力和激活状态造成损伤。如果采用小分子化学药物包裹 mRNA 的方法,将载体递送到细胞中,会造成较高的生产成本,以及在细胞水平的表达量不统一,且 mRNA 也非常不稳定。

“要是我们能开发出一种方法,可以不用病毒、电击、mRNA,而是只用蛋白来实现基因编辑,就极大可能弥补当前那些传统方法存在的缺陷。”美国宾夕法尼亚大学史俊炜副教授表示。

bbd43115b00747caa13a969ae613dc10~tplv-obj.image?traceid=202308251738147510C7AC60DE351F2AD1&x-expires=2147483647&x-signature=3Adr2Wob5ahzXubMZOd6%2Fr9Wh8U%3D
图丨史俊炜(来源:史俊炜)

基于上述设想,他和团队设计了一套多肽辅助的纯蛋白基因组编辑(Peptide-Assisted Genome Editing,PAGE)的 CRISPR-Cas 系统(以下简称为 CRISPR-PAGE 系统),在方便、高效、无毒性的条件下,实现了对原代细胞的基因组编辑。研究结果显示,该系统在小鼠和人类原代 T 细胞中,能够实现高达 98% 的编辑效率;在人类原代造血干细胞和祖细胞中,则能够实现接近 100% 的基因编辑效率。

47051e4769804df48e97cfebf133d8f5~tplv-obj.image?traceid=202308251738147510C7AC60DE351F2AD1&x-expires=2147483647&x-signature=K4x8XIU5MyNQ4ceslvmQ9QpOtQE%3D
图丨CRISPR-PAGE 系统的开发(来源:Nature Biotechnology)

值得一提的是,CRISPR-PAGE 系统由穿透细胞的 Cas 蛋白和穿透细胞的核内体逃逸肽组成,只需 30 分钟的孵育期,就能在将细胞毒性和基因转录干扰降至最低的同时,实现强大的单基因组和多基因组编辑。

那么,具体来说,单基因组和多基因组编辑究竟是如何实现的呢?

“由于细胞膜和核膜都由脂类组成且带负电,因此我们就想,如果能在 CRISPR 蛋白的表面修饰足够多的正电或亲脂疏水性基团,这个 CRISPR 蛋白就会直接融合且穿透细胞膜和核膜,进而实现基因编辑。并且,在该方法中,蛋白和细胞之间是共孵育的,所以要实现单基因或多基因,只用孵育不同的蛋白即可。”史俊炜解释道。

同时,他也强调,该方法最大的应用意义在于,CRISPR-PAGE 系统是基于细菌生产,生产成本低、状态稳定、易于运输,同时也容易实现基因编辑,且编辑完后不留任何痕迹,也就是原代细胞里剩下的 CRISPR 的所有系统,会在两天之内完全清除。

2023 年 4 月 24 日,相关论文以《利用肽辅助基因组编辑的人类和小鼠原代细胞高效工程》(Efficient engineering of human and mouse primary cells using peptide-assisted genome editing)为题在 Nature Biotechnology 上发表[1]。

b8f5705e1ad04cc9b0c8770b649c461c~tplv-obj.image?traceid=202308251738147510C7AC60DE351F2AD1&x-expires=2147483647&x-signature=foCBcKZUDl6%2FEjO1Glz62ZMC9aQ%3D
图丨相关论文(来源:Nature Biotechnology)

宾夕法尼亚大学博士后研究员张珍为该论文的第一作者,宾夕法尼亚大学免疫学研究所所长 E·约翰·惠里(E. John Wherry)、宾夕法尼亚大学表观遗传学所长雪莱·L·伯杰(Shelley L. Berger)教授和史俊炜副教授担任论文的共同通讯作者。

在这项研究中,该团队主要把 CRISPR-PAGE 系统用于人类的 T 细胞和血液干细胞中。事实上,包括巨噬细胞、树突状细胞、自然杀伤细胞等在内的许多来自血液的细胞,都可以通过该系统实现基因编辑。

并且,如上所述,该方法是让带正电或带亲脂疏水基团的 CRISPR,通过带负电的细胞膜和核膜,遵循了基因正负电相互作用和脂类融合的原则,因此能为原代细胞的下一代基因工程,提供广泛通用的平台。

此外,该方法虽然已经实现了单基因或多基因敲除,但未来的基因编辑或细胞治疗方法,还要求能够达到单点突变、多点突变或整个基因的更换。因此,该团队后续也计划对该方法进行进一步的升级。

“虽然我们研究的这个方法是基于 CRISPR 的基因改造,但只要能够找到合适的表面带正电或具有亲脂疏水性的结构,其还能用于其他大分子或基于蛋白质的治疗递送,并有助于更多潜在治疗方法的开发。”史俊炜表示。

参考资料:

1. Zhang, Z., Baxter, A.E., Ren, D. et al. Efficient engineering of human and mouse primary cells using peptide-assisted genome editing. Nature Biotechnology (2023). https://doi.org/10.1038/s41587-023-01756-1


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK