4

Pandas 加载数据的方法和技巧 - 咸鱼Linux运维

 1 year ago
source link: https://www.cnblogs.com/edisonfish/p/17441220.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

哈喽大家好,我是咸鱼

相信小伙伴们在学习 python 数据分析的过程中或多或少都会听说或者使用过 pandas

pandas 是 python 的一个拓展库,常用于数据分析

今天咸鱼将介绍几个关于 pandas 导入数据的方法和技巧

从 URL 获取 csv 数据

关于 pandas 导入 csv 数据,使用的是下面这个方法

pandas.read_csv()

但是这个方法可以通过 HTTP 从 URL 来获取 CSV 数据

关于通过 HTTP 从 URL 来获取 CSV 数据,我在之前的文章《为什么访问同一个网址却返回不同的内容》有介绍过

例如下面的例子将展示如何通过 URL 获取 csv 文件

image
url = 'https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/sklearn/datasets/data/boston_house_prices.csv'

df = pandas.read_csv(url)

通过 URL 来获取 CSV 数据,可以省去了需要先将 CSV 文件保存在本地这一步骤

从网站获取 HTML table 数据

pandas.read_html() 用于获取 HTML 文件中的 table 数据(即<table>标签的表格数据)

我们看下面的例子

import pandas as pd

url = 'http://weather.sina.com.cn/china/shanghaishi/'
df_tables = pd.read_html(url)
print(df_tables)
image

通过 pandas.read_html() 可以实现简易爬虫

JSON 数据格式化

有时候我们在处理 JSON 数据的时候,会发现 JSON 数据通常都是嵌套好多层

如果我们想要将 JSON 数据转换成表格数据,使其扁平化,我们可以用下面的方法来实现

pandas.json_normalize()

看下面的例子

impor pandas as pd

data =[
    {
      "id": "A001",
      "name": "咸鱼运维杂谈",
      "url": "https://www.cnblogs.com/edisonfish/",
      "likes": 61
    },
    {
      "id": "A002",
      "name": "Google",
      "url": "www.google.com",
      "likes": 124
    },
    {
      "id": "A003",
      "name": "淘宝",
      "url": "www.taobao.com",
      "likes": 45
    }
  ]

df = pd.json_normalize(data)
print(df)
     id    name      url                                    likes
0  A001  咸鱼运维杂谈  https://www.cnblogs.com/edisonfish/    61
1  A002  Google      www.google.com                         124
2  A003   淘宝        www.taobao.com                         45

接下来,让我们尝试读取更复杂的 JSON 数据,该数据嵌套了列表和字典

import pandas as pd

data ={
    "school_name": "local primary school",
    "class": "Year 1",
    "info": {
      "president": "John Kasich",
      "address": "ABC road, London, UK",
      "contacts": {
        "email": "[email protected]",
        "tel": "123456789"
      }
    },
    "students": [
    {
        "id": "A001",
        "name": "Tom",
        "math": 60,
        "physics": 66,
        "chemistry": 61
    },
    {
        "id": "A002",
        "name": "James",
        "math": 89,
        "physics": 76,
        "chemistry": 51
    },
    {
        "id": "A003",
        "name": "Jenny",
        "math": 79,
        "physics": 90,
        "chemistry": 78
    }]
}


# 展平数据
df = pd.json_normalize(
    data,
    record_path =['students'],
    meta=[
        'class',
        ['info', 'president'],
        ['info', 'contacts', 'tel']
    ]
)
print(df)
     id   name  math  ...   class  info.president info.contacts.tel
0  A001    Tom    60  ...  Year 1     John Kasich         123456789
1  A002  James    89  ...  Year 1     John Kasich         123456789
2  A003  Jenny    79  ...  Year 1     John Kasich         123456789

[3 rows x 8 columns]

从剪贴板获取数据

pandas 的 read_clipboard() 方法可以获取存储在剪贴板上的任何数据

假设你将数据从网上要复制粘贴到本地,那么用 pandas 的 read_clipboard() 方法可以直接读取剪贴板的内容

默认情况下采取正则表达式\s+ 作为分隔值的分隔符(即匹配一个或多个空格、制表符、换行符等空白字符作为分隔符),然后将剪贴板上的数据分割成表格数据

import pandas as pd

df = pd.read_clipboard()

print(df)

参考文章:https://jrashford.com/2022/08/02/loading-data-into-pandas-5-tips-and-tricks-you-may-or-may-not-know/


Recommend

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK