

Python连接es笔记二之查询方式汇总 - XHunter
source link: https://www.cnblogs.com/hunterxiong/p/17441709.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

本文首发于公众号:Hunter后端
原文链接:Python连接es笔记二之查询方式汇总
上一节除了介绍使用 Python 连接 es,还有最简单的 query() 方法,这一节介绍一下几种其他的查询方式。
以下是本篇笔记目录:
- query() 方法介绍
- Q() 查询
- source() 指定返回字段
- extra() 操作
- count() 总数
- from_dict() 函数
1、query() 方法介绍
在上一节中介绍了 query() 的一个简单示例,如下:
s = Search(using="default").index("exam")
s = s.query("match", name="张三丰")
query() 中接受两个参数,第一个是字段查询的方式,比如这里是 match,也可以是 term,这个依照查询的目的来替换。
第二个则是查询的字段与值,比如这里是查询的 name 字段为 "张三丰" 的数据。
如果是有多个条件,比如 name="张三丰",address="中国" 的数据,这里的 = ,并非是完全等于的意思,而是会依照前面的查询方式,比如 match 或 term 进行类似的分词或者模糊搜索。
如果是上面多个条件的查询,可以直接在后面加上类似的 query():
s = s.query("match", name="张三丰").query("match", address="中国")
这两个 query() 通过链式操作连在一起转换成 es 语句就是使用 must 将多条件连接在一起,我们可以使用 to_dict() 方式来查看:
s.to_dict()
# {'query': {'bool': {'must': [{'match': {'name': '张三丰'}}, {'match': {'address': '中国'}}]}}}
2、Q() 查询
如果看过之前我写过的 Django 系列笔记,应该记得在 Django 里也有个 Q() 方法的查询,和这里的一样,也是用于条件的联合,与或非条件都可以实现。
引入方式如下:
from elasticsearch_dsl import Q
但是如果是在 Django 中使用 es 的连接,也是同样使用 Q() 方法,我们可以使用 as 来区分,这里我们对于 es 的 Q() 方法可以使用 ES_Q() 来区分:
from elasticsearch_dsl import Q as ES_Q
单个条件的使用 Q() 如下:
s = s.query(ES_Q("match", name="张三丰"))
如下使用 dict 形式的操作也是等效的:
s = s.query(ES_Q({"match": {"name": "张三丰"}}))
对于这两个条件,如果想要实现它们的与操作:
q1 = ES_Q("match", name="张三丰")
q2 = ES_Q("match", address="中国")
可以如下实现:
s = s.query(q1 & q2)
如果是想实现上面的或操作,可以如下:
s = s.query(q1 | q2)
如果是想取反,直接在条件前加一个 ~
即可:
q1 = ~ES_Q("match", name="张三丰")
s = s.query(q1)
multi_match
如果是搜索多字段,可以如下操作:
q = ES_Q("multi_match", query="中国 张三丰", fields=["name", "address"])
s = s.query(q)
text.keyword 操作
对于 es 中 text 字段,前面我们介绍过 .keyword
的查询方式,是将 text 字段作为一个整体进行查询,在 ES_Q() 中,以下两种操作是等效的:
q = ES_Q({"term": {"address.keyword": "中国湖北省"}})
q = ES_Q("term", address__keyword="中国湖北省")
filter() 操作
在 es 中的 filter 操作,在 Python 中是一个 filter() 函数,可以直接使用:
q = ES_Q("term", name="张三丰")
s = s.filter(q)
range 操作
实现大小于的操作示例如下:
q = ES_Q({"range": {"age": {"gte": 21}}})
s = s.query(q)
exclude() 操作
如果是想取反,除了使用 ~Q(),还可以直接使用 exclude() 函数,这个和 Django 里的操作也是一样的:
q = ES_Q("term", name="张三丰")
s = s.exclude(q)
如果是想对返回的结果进行排序操作,直接使用 .sort() 方法。
比如想对 age 字段排序,正序返回数据,可如下操作:
s = s.sort("age")
如果是想倒序返回,可以如下操作:
s = s.sort("-age")
多字段排序直接在后面跟上就行:
s = s.sort("-age", "name")
Python 连接 es 进行分页,可以直接使用 Python 里的切片操作,比如:
s = s[5:10]
5、source() 指定返回字段
我们可以通过 source() 方法指定返回的字段:
s = s.source(["name", "address"])
source() 方法还可以接受 includes 和 excludes 参数来指定返回的字段或者不返回的字段,这个和 es 的原生处理方式是一致的:
s = s.source(
includes=["address"],
excludes=["name"]
)
6、extra() 操作
extra() 函数接受一些查询的额外属性,比如 size 参数决定返回条数,比如 from 参数可以决定从第几条数据开始返回,sort 参数决定排序方式,以及 _source 参数决定返回的字段。
比如我们想要返回的数据从第 2 条数据开始,返回两条,按照 name 字段进行排序,只返回 name 和 _id 字段,可以如下操作:
s = Search(using="default").index("exam")
s = s.extra(
sort="name",
_source=["name"],
**{
"from": 1,
"size": 2
}
)
response = s.execute()
7、count() 总数
前面介绍过获取符合条件的总数,可以通过 response.hits.total.value 的方式获得,其实对于 Search(),可以直接使用 count() 函数:
count = s.count()
8、from_dict() 函数
如果我们想直接运行 kibana 里执行的命令,可以使用 from_dict() 函数,比如:
s = s.from_dict(
{
"query": {
"term": {
"name": {
"value": "张三丰"
}
}
}
}
)
如果想获取更多后端相关文章,可扫码关注阅读:

Recommend
About Joyk
Aggregate valuable and interesting links.
Joyk means Joy of geeK