

Python3的原生协程(Async/Await)和Tornado异步非阻塞
source link: https://v3u.cn/a_id_113
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

Python3的原生协程(Async/Await)和Tornado异步非阻塞

我们知道在程序在执行 IO 密集型任务的时候,程序会因为等待 IO 而阻塞,而协程作为一种用户态的轻量级线程,可以帮我们解决这个问题。协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存,在调度回来的时候,恢复先前保存的寄存器上下文和栈。因此协程能保留上一次调用时的状态,即所有局部状态的一个特定组合
说人话:说白了就是,当协程遇到io操作而阻塞时,立即切换到别的任务,如果操作完成则进行回调返回执行结果,提高了效率,同时这样也可以充分利用 CPU 和其他资源,这就是异步协程的优势,并且协程本质上是个单进程,相对于多进程来说,无需进程间上下文切换的开销,无需原子操作锁定及同步的开销,编程模型也非常简单。
在python2以及python3.3时代,人们使用协程还得基于greenlet或者gevent,greenlet机制的主要思想是:生成器函数或者协程函数中的yield语句挂起函数的执行,直到稍后使用next()或send()操作进行恢复为止。可以使用一个调度器循环在一组生成器函数之间协作多个任务,它的缺点是必须通过安装三方库进行使用,使用时由于封装特性导致性能有一定的流失。
终于在python3.4中,我们迎来了python的原生协程关键字:Async和Await,它们的底层基于生成器函数,使得协程的实现更加方便。
Async 用来声明一个函数为异步函数,异步函数的特点是能在函数执行过程中挂起,去执行其他异步函数,等到挂起条件(假设挂起条件是sleep(5))消失后,也就是5秒到了再回来执行。
Await 用来用来声明程序挂起,比如异步程序执行到某一步时需要等待的时间很长,就将此挂起,去执行其他的异步程序
首先我们先来看一个不使用协程的程序
import time
def job(t):
time.sleep(t)
print('用了%s' % t)
def main():
[job(t) for t in range(1,3)]
start = time.time()
main()
print(time.time()-start)

从运行结果可以看出,我们的 job 是按顺序执行的。必须执行完 job 1 才能开始执行 job 2, job 1 需要 1 秒的执行时间,job 2 需要 2 秒的执行时间,所以总时间是 3 秒多。
如果我们使用协程的方式,job 1 在等待 time.sleep(t) 执行结束的时候,是可以切换到 job 2 执行的。
import time
import asyncio
async def job(t): # 使用 async 关键字将一个函数定义为协程
await asyncio.sleep(t) # 等待 t 秒, 期间切换执行其他任务
print('用了%s秒' % t)
async def main(loop): # 使用 async 关键字将一个函数定义为协程
tasks = [loop.create_task(job(t)) for t in range(1,3)] # 创建任务, 不立即执行
await asyncio.wait(tasks) # 执行并等待所有任务完成
start = time.time()
loop = asyncio.get_event_loop() # 建立 loop
loop.run_until_complete(main(loop)) # 执行 loop
loop.close() # 关闭 loop
print(time.time()-start)

从运行结果可以看出,我们没有等待 job 1 执行结束再开始执行 job 2,而是 job 1 触发 await 的时候切换到了 job 2 。 这时 job 1 和 job 2 同时在执行 await asyncio.sleep(t),所以最终程序的执行时间取决于执行时间最长的那个 job,也就是 job 2 的执行时间:2 秒
由此可见,效率提高非常明显。
同理,在之前一篇文章中:关于Tornado:真实的异步和虚假的异步 提到了tornado默认是同步阻塞机制,如果要激活异步非阻塞的特性,需要使用异步写法,在那篇文章我使用的装饰器的形式来声明异步方法,而在这里,我们同样可以使用async和await来进行协程的异步非阻塞任务
import tornado.web
from tornado import gen
class IndexHandler(tornado.web.RequestHandler):
def get(self):
self.write('index')
async def doing():
await gen.sleep(10) # here are doing some things
return 'Non-Blocking'
class NonBlockingHandler(tornado.web.RequestHandler):
async def get(self):
result = await doing()
self.write(result)
application = tornado.web.Application([
(r"/", IndexHandler),
(r"/nonblocking", NonBlockingHandler),
])
if __name__ == "__main__":
application.listen(8888)
tornado.ioloop.IOLoop.instance().start()
可以看到,虽然代码可读性下降了一点,但是性能和效率却实实在在的提升了
Recommend
-
87
协程定义: 协程,又称微线程,纤程。英文名Coroutine。 子程序,或者称为函数,在所有语言中都是层级调用,比如A调用B,B在执行过程中又调用了C,C执行完毕返回,B执行完毕返回,最后是A执行完毕。所以子程序调用是通过栈实现的,一个线程就是执行一个子程序。子...
-
9
tornado异步网络编程实践 2016-09-08 约 834 字 预计阅读 2 分钟 次阅读 ...
-
11
渡劫 C++ 协程(6):基于协程的挂起实现无阻塞的 sleep 发表于 2022-03-20 阅读次数: 本文字数: 9.4k 阅读时长 ≈ 17 分钟如果你想要等待 100ms,你会怎么做?sleep_for(100ms) 吗?在以往,我们想要...
-
9
Tornado Tornado 是一款非阻塞可扩展的使用Python编写的web服务器和Python Web框架, 可以使用Tornado编写Web程序并不依赖任何web服务器直接提供高效的web服务.所以Tornado不仅仅是一个web框架而且还是一款可以...
-
10
Home Menu...
-
6
...
-
7
我们一直都相信这样一种说法:协程是比多线程更高效的一种并发工作方式,它完全由程序本身所控制,也就是在用户态执行,协程避免了像线程切换那样产生的上下文切换,在性能方面得到了很大的提升。毫无疑问,这是颠扑不破的业界共识,是放之四海而皆准的真理。
-
5
乾坤大挪移,如何将同步阻塞(sync)三方库包转换为异步非阻塞(async)模式?Python3.10实现。 首页 - Python
-
10
tornado原理介绍及异步非阻塞实现方式 以下内容根据自己实操和理解进行的整理,欢迎交流~ 在tornado的开发中,我们一般会见到以下四个组成部分。 ioloop: 同一个ioloop实例运...
-
6
使用异步非阻塞框架Tornado配合七牛云存储Api来异步切分上传文件首页 - Python/2019-12-15
About Joyk
Aggregate valuable and interesting links.
Joyk means Joy of geeK