

【论文笔记】UNet - 湾仔码农
source link: https://www.cnblogs.com/Fish0403/p/17091659.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

语义分割的U-Net网络结构Unet是2015年诞生的模型,它几乎是当前segmentation项目中应用最广的模型。Unet能从更少的训练图像中进行学习,当它在少于40张图的生物医学数据集上训练时,IOU值仍能达到92%。Unet网络非常简单,前半部分作用是特征提取,后半部分是上采样。在一些文献中也把这样的结构叫做编码器-解码器结构。由于此网络整体结构类似于大写的英文字母U,故得名U-net。
论文链接: https://arxiv.org/pdf/1505.04597v1.pdf
github: https://github.com/milesial/Pytorch-UNet
1 Motivation
生物医学图像处理面临的问题
- 经典卷积网络大部分都是针对图像分类任务的,但是在一些特定场景,如医疗图像处理领域,应是pixel-wise像素级的处理,输入输出均是图像,即图像分割。
- 生物医学任务中没有很多标注的数据集
为了解决这两个问题,Ciresan用滑窗法来预测patch的类别(patch指像素周围的局部区域)。 该算法有两个主要问题:(1)由于每个patch都需要训练导致这个算法很慢,且patch之间有很多重复。(2)定位准确率和上下文联系之间需要平衡,patch越大需要pooling越多准确率越低,patch越小则不具备上下文联系。
2 U-Net网络
作者以FCN全卷积神经网络为基础设计了Unet,其中包含两条串联的路径:contracting path用来提取图像特征,捕捉context,将图像压缩为由特征组成的feature maps;expanding path用来精准定位,将提取的特征解码为与原始图像尺寸一样的分割后的预测图像。
和FCN相比,U-Net的第一个特点是完全对称,也就是左边和右边是很类似的,而FCN的decoder相对简单,只用了一个deconvolution的操作,之后并没有跟上卷积结构。第二个区别就是skip connection,FCN用的是加操作(sum),U-Net用的是叠操作(concat)。最重要的是编码和解码(encoder-decoder)的思路,编码和解码常用于压缩图像和去噪声,后来这个思路被用在了图像分割上,非常简洁好用。

- 网络左边一侧作者称之为contracting path,右边一侧为expanding path。
- 蓝色箭头为卷积层,卷积层的stride=1,padding=0,因此卷积后特征层的宽高会减2。卷积层后接ReLU激活函数,没有BN层(BN由Google于2015年提出)。
- 池化层stride=2,池化后宽高减半,通道数不变。池化层之后的卷积层将通道数翻倍。
- 绿色的up-conv是转置卷积,将特征层的宽高×2,通道数减半。
- 灰色copy and crop是先对左边的特征层进行中心裁剪(保留中心特征),再与右边path对应的特征层进行通道数上的concat。
- 最后的1×1的卷积没有ReLU,输出通道数为类别数。
Overlap-tile

可以发现Unet论文中输入的图像是572×572,但是输出图像大小为388×388。也就是说推理上图黄色部分,需要蓝色区域内的图像数据作为输入。当黄色区域位于边缘时,就会产生边缘数据缺失的情况(上图右边蓝框中的空白部分)。我们可以在预处理中,对输入图像进行padding,通过padding扩大输入图像的尺寸,使得最后输出的结果正好是原始图像的尺寸,同时输入图像块(黄框)的边界也获得了上下文信息从而提高预测的精度,本文用的是mirror padding。我们自己搭建网络的时候,输入输出往往是一样大小的(padding=1),因此不需要考虑这个问题。
3.1 数据增强
网络需要大量标注训练样本,生物医学任务中没有数千个标注的数据集,所以需要对数据进行数据扩张。作者采用了弹性变形的图像增广,以此让网络学习更稳定的图像特征。因为数据集是细胞组织的图像,细胞组织的边界每时每刻都会发生不规则的畸变,所以这种弹性变形的增广是非常有效的。论文笔记:图像数据增强之弹性形变(Elastic Distortions)
3.2 损失函数的权重
细胞组织图像的一大特点是,多个同类的细胞会紧紧贴合在一起,其中只有细胞壁或膜组织分割。因此,作者在计算损失的过程中,给两个细胞的边缘部分及细胞间的背景部分增加了损失的权重,以此让网络更加注重这类重合的边缘信息。

如上图所示,图(a)为原始图像,图(b)为人工标注的实例分割ground truth,图(c)为mask,图(d)为每个像素的损失权重weight map。首先用形态学操作获得边界,再用下面的公式计算weight map
其中,wc是为了类别平衡,d1是该像素到最近细胞边界的距离,d2是到第二近的细胞边界的距离。在作者实验中设置w0=10,σ≈5pixels.
3.3 其他
- 优化器:SGD + momentum(0.99)
- batch:为了最大限度的使用GPU显存,比起输入一个大的batch size,更倾向于大量输入tiles,因此实验batch size为1。
- 损失函数:pixel-wise softmax + cross_entropy
- 初始化高斯分布权重:在具有许多卷积层和通过网络的不同路径的深度网络中,权重的良好初始化非常重要。 否则,网络的某些部分可能会进行过多的激活,而其他部分则永远不会起作用。 理想情况下,应调整初始权重,以使网络中的每个特征图都具有大约单位方差。作者用的高斯分布的权重。
1. 精读论文U-Net
2. 论文笔记:图像数据增强之弹性形变(Elastic Distortions)
3. 研习U-Net
Recommend
About Joyk
Aggregate valuable and interesting links.
Joyk means Joy of geeK