2

详解支持向量机-约束优化问题-弱对偶性证明【白板推导系列笔记】

 1 year ago
source link: https://blog.51cto.com/u_15767241/5765038
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

详解支持向量机-约束优化问题-弱对偶性证明【白板推导系列笔记】

精选 原创

简单来说,引入拉格朗日乘子是为了强制要求所有的约束条件必须被满足,当xxx违反约束条件时,L(x,α,β)→+∞L(x,\alpha,\beta) \rightarrow  +\inftyL(x,α,β)→ +∞, 当xxx满足约束条件时,L(x,α,β)=f(x)L(x,\alpha,\beta) = f(x)L(x,α,β)=f(x)。

假设f(x),ci(x),hj(x)f(x),c_i(x),h_j(x)f(x),ci​(x),hj​(x)是定义在RnR^nRn上的连续可微函数。考虑约束最优化问题(极大化问题可以简单地转换为极小化问题,这里仅讨论极小化问题):

min⁡x∈Rnf(x)s.t.mi(x)≤0,i=1,2,⋯,knj(x)=0,j=1,2,⋯,l\begin{aligned} \min_{x \in R^n} \hspace{1em} & f(x)\\ s.t. \hspace{1em} & m_i(x) \le 0, \hspace{1em} i=1,2,\cdots,k\\ & n_j(x) = 0, \hspace{1em} j=1,2,\cdots,l \end{aligned} x∈Rnmin​s.t.​f(x)mi​(x)≤0,i=1,2,⋯,knj​(x)=0,j=1,2,⋯,l​

引入拉格朗日乘子后,得到拉格朗日函数

L(x,α,β)=f(x)+∑i=1kαici(x)+∑j=1lβjhj(x)L(x,\alpha,\beta) = f(x) + \sum_{i=1}^k \alpha_i c_i (x) + \sum_{j=1}^l \beta_j h_j (x) L(x,α,β)=f(x)+i=1∑k​αi​ci​(x)+j=1∑l​βj​hj​(x)

如果xxx违反mi(x)m_{i}(x)mi​(x)约束,即mi(x)>0m_{i}(x)>0mi​(x)>0,那么max λL→+∞\mathop{\text{max }}\limits_{\lambda}L \to  +\inftyλmax ​L→ +∞

如果xxx符合mi(x)m_{i}(x)mi​(x)约束,即mi(x)≤0m_{i}(x)\leq 0mi​(x)≤0,那么max λL≠+∞\mathop{\text{max }}\limits_{\lambda}L \ne +\inftyλmax ​L=+∞

min xmax λL=min x{max⁡L⏟符合约束,+∞⏟违反约束}=min xmax λL \mathop{\text{min }}\limits_{x}\mathop{\text{max }}\limits_{\lambda}L=\mathop{\text{min }}\limits_{x}\left\{\underbrace{\max L}_{符合约束},\underbrace{+\infty}_{违反约束}\right\}=\mathop{\text{min }}\limits_{x}\mathop{\text{max }}\limits_{\lambda}L

xmin ​λmax ​L=xmin ​{符合约束maxL​​,违反约束+∞​​}=xmin ​λmax ​L

如果xxx违反nj(x)n_{j}(x)nj​(x)约束,即nj(x)≠0n_{j}(x)\ne 0nj​(x)=0,那么max βL→+∞\mathop{\text{max }}\limits_{\beta}L \to +\inftyβmax ​L→+∞

如果xxx符合nj(x)n_{j}(x)nj​(x)约束,即nj(x)=0n_{j}(x)=0nj​(x)=0,那么max βL≠+∞\mathop{\text{max }}\limits_{\beta}L \ne +\inftyβmax ​L=+∞

min xmax λL=min x{max⁡L,+∞}=min xmax λL \mathop{\text{min }}\limits_{x}\mathop{\text{max }}\limits_{\lambda}L=\mathop{\text{min }}\limits_{x}\left\{\max L,+\infty\right\}=\mathop{\text{min }}\limits_{x}\mathop{\text{max }}\limits_{\lambda}L

xmin ​λmax ​L=xmin ​{maxL,+∞}=xmin ​λmax ​L

所谓弱对偶性,指的是对偶问题≤\leq≤原问题,即:

min⁡max⁡f≥max⁡min⁡f\min \max f \geq \max \min f minmaxf≥maxminf

对于L(x,λ,η)L(x,\lambda,\eta )L(x,λ,η)这个函数,我们知道下面这个不等式一定成立

min xL(x,λ,η)≤L(x,λ,η)≤max λ,ηL(x,λ,η) \mathop{\text{min }}\limits_{x}L(x,\lambda,\eta )\leq L(x,\lambda,\eta )\leq \mathop{\text{max }}\limits_{\lambda,\eta }L(x,\lambda,\eta )

xmin ​L(x,λ,η)≤L(x,λ,η)≤λ,ηmax ​L(x,λ,η)

中间L(x,λ,η)L(x,\lambda,\eta )L(x,λ,η)我们可以理解为LLL的值域,值域里面的任何一个数,必然是大于等于它对xxx的最小值,小于等于它对λ,η\lambda,\etaλ,η的最大值。

A(λ,η)=min xL,B(x)=max λ,ηL A(\lambda,\eta )=\mathop{\text{min }}\limits_{x}L,B(x)=\mathop{\text{max }}\limits_{\lambda,\eta }L

A(λ,η)=xmin ​L,B(x)=λ,ηmax ​L

A(λ,η)≤B(x)A(λ,η)≤min⁡B(x)max⁡A(λ,η)≤min⁡B(x) \begin{aligned}

A(\lambda,\eta )&\leq B(x)\\

A(\lambda,\eta )&\leq \min B(x)\\

\max A(\lambda,\eta )&\leq \min B(x)

\end{aligned}

A(λ,η)A(λ,η)maxA(λ,η)​≤B(x)≤minB(x)≤minB(x)​

max⁡min⁡L≤min⁡max⁡L \max \min L \leq \min \max L

maxminL≤minmaxL

后面还有对偶关系之几何解释、对偶关系之slater condition、对偶关系之KKT条件,以后会补上的

  • 收藏
  • 评论
  • 分享
  • 举报

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK