

赛尔译文 | 基础模型的机遇与风险 (一)
source link: https://mp.weixin.qq.com/s?__biz=MzIxMjAzNDY5Mg%3D%3D&%3Bmid=2650803333&%3Bidx=1&%3Bsn=c8a0ee667b6b2c45df1cff5633ae1820
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

赛尔译文 | 基础模型的机遇与风险 (一)
原文:On the Opportunities and Risks of Foundation Models链接:https://arxiv.org/pdf/2108.07258.pdf译者:哈工大 SCIR 张伟男,朱庆福,聂润泽,牟虹霖,赵伟翔,高靖龙,孙一恒,王昊淳,车万翔(所有译者同等贡献)转载须标注出处:哈工大 SCIR
编者按:近几年,预训练模型受到了学术界及工业界的广泛关注,对预训练语言模型的大量研究和应用也推动了自然语言处理新范式的产生和发展,进而影响到整个人工智能的研究和应用。近期,由斯坦福大学众多学者联合撰写的文章《On the Opportunities and Risks of Foundation Models》,将该模型定义为基础模型(Foundation Models),以明确定义其在人工智能发展过程中的作用和地位。文章介绍了基础模型的特性、能力、技术、应用以及社会影响等方面的内容,以此分析基于基础模型的人工智能研究和应用的发展现状及未来之路。鉴于该文章内容的前沿性、丰富性和权威性,我们(哈工大SCIR公众号)将其翻译为中文,希望有助于各位对基础模型感兴趣、并想了解其最新进展和未来发展的读者。因原文篇幅长达200余页,译文将采用连载的方式发表于哈工大SCIR公众号,敬请关注及提出宝贵的意见!
- 引言
- 涌现和同质化
- 社会影响和基础模型生态系统
- 基础模型的未来
- 概述
摘要
随着在大规模数据上训练并适配到各种下游任务的模型(例如,BERT、DALL-E、GPT-3)的兴起,人工智能正在经历范式上的转变。我们将这些模型称为基础模型,以强调它们至关重要但并不完整的特征。本文详尽地介绍了基础模型的机遇和风险,包括其能力(例如,语言、视觉、机器人学、推理、人机交互)和技术原理(例如,模型架构、训练过程、数据、系统、安全、评价、理论)、应用(例如,法律、医疗保健、教育)和社会影响(例如,不平等、滥用、经济和环境影响、法律和伦理影响)。尽管基础模型基于标准的深度学习和迁移学习,但其规模导致了新能力的涌现,其在众多任务中的有效性激励了同质化的产生。同质化提供了强大的影响力,但需要谨慎使用,因为基础模型的缺陷会被所有下游适配模型所继承。尽管基础模型即将被广泛部署,但目前我们对其如何工作、何时失效以及其涌现的特性衍生了何种能力尚缺乏清晰的理解。为解决这些问题,我们相信对于基础模型的大量关键研究,需要与其基础社会技术性质相称的深度跨学科的合作。
1 引言本文调研了一种新兴范式,基于通用类模型构建人工智能(AI)系统,我们称这种模型为基础模型2。基础模型是任意的在大规模数据上训练并且可以适配(例如,微调)广泛下游任务的模型;当前的例子包括BERT[Devlin et al. 2019]、GPT-3 [Brown et al. 2020]和CLIP[Radford et al. 2021]。从技术角度来看,基础模型并不新鲜—它们基于深度神经网络和自监督学习,两者都已经存在了几十年。然而,过去几年基础模型的庞大规模和应用范围已经超出了我们对其可能性的想象。例如,GPT-3有1750亿个参数,尽管没有在特定任务上进行明确的训练,仍可以通过自然语言提示(prompts)适配到特定任务上,在大多数任务上取得了不错的效果 [Brown et al. 2020]。与此同时,现有的基础模型可能有潜在的危害性,而且对它们的特性普遍知之甚少。鉴于它们即将被广泛部署,对基础模型的严格监督已成为被广泛讨论的议题[Bender et al. 2021]。1.1 涌现和同质化基础模型的意义可以用两个词来概括:涌现和同质化。涌现意味着系统的行为是隐式归纳而不是显式构造的;它既带来科学上的振奋,也引起了对意外后果的焦虑。同质化指出了在广泛的应用中构建机器学习系统的方法论的合集;它为许多任务提供了强大的支撑,但也会产生故障点。为了更好地理解涌现和同质化,让我们回顾一下过去30年来它们在人工智能研究中的崛起。2 我们选择术语基础模型来表示这些模型尚未完成但重要的状态 — 请参阅 §1.1.1:命名 以进一步讨论该名称。
可以追溯到词嵌入[Turian et al. 2010; Mikolov et al. 2013; Pennington et al. 2014]的自监督学习取得了相当大的进步,它将每个词与上下文无关向量相关联,为广泛的NLP模型提供基础。此后不久,基于自回归语言建模的自监督学习(根据前一个词预测下一个词)[Dai and Le 2015]开始流行。这产生了在上下文中表示单词的模型,例如GPT[Radford et al. 2018]、ELMo[Peters et al. 2018]和ULMFiT[Howard and Ruder 2018]4 。3 有趣的是,自监督学习在深度学习的早期占据主导地位 [Hinton et al. 2006],但十年来,随着标注数据集变得 越来越大,它在很大程度上被纯粹的有监督学习所取代。
自监督学习的下一波发展浪潮—BERT[Devlin et al. 2019]、GPT-2[Radford et al. 2019]、RoBERTa[Liu et al. 2019]、T5[Raffel et al. 2019]、BART[Lewis et al. 2020]—迅速跟进,采用Transformer架构,结合更强大的深度双向句子编码器,并扩展到更大的模型和数据集。虽然人们可以纯粹地通过自监督学习的视角来看待这最后一波技术发展,但围绕 BERT的引入出现了一个社会学拐点。在2019年之前,语言模型的自监督学习本质上是NLP的子领域,它与NLP其他方面的发展并行推进。2019年之后,使用语言模型的自监督学习更多地成为NLP的基质,因为使用BERT已成为常态。对于单个模型可用于如此广泛任务的接受标志着基础模型时代的开始。基础模型导致了前所未有的同质化水平:几乎所有最先进的NLP模型现在都源自少数基础模型之一,例如BERT、RoBERTa、BART、T5等。虽然这种同质化产生了极高的影响力(基础模型的任何改进都可以为所有NLP任务带来直接的好处),但它也是一种负担;所有人工智能系统都可能继承一些与基础模型相同的错误偏置 [Bolukbasi et al. 2016; Caliskan et al. 2017; Abid et al. 2021, inter alia])—详见 §5.1:公平,§5.6:伦理的讨论。我们也开始看到跨研究社区的同质化。例如,类似的基于Transformer的序列建模方法现在被应用于文本[Devlin et al. 2019; Radford et al. 2019; Raffel et al. 2019]、图像[Dosovitskiy et al. 2020; Chen et al. 2020b]、语音 [Liu et al. 2020]、表格数据 [Yin et al. 2020]、蛋白质序列[Rives et al. 2021]、有机分子[Rothchild et al. 2021]和强化学习[Chen et al. 2021a; Janner et al. 2021]。这些例子表明,未来我们将拥有一套统一的工具来开发各种模态的基础模型[Tamkin et al. 2021]。4 有先见之明的工作 Collobert and Weston [2008] 是相关的:他们与下游任务联合进行了类似于掩码语言建模的 可扩展任务的训练,而不是生成可以事后适配下游任务的单一基础模型。
图3 在推断基础模型的社会影响之前,首先要了解它们是从数据创建到部署的更广泛生态系统的一部分。在两端,我们都强调了人是训练基础模型的最终数据来源,同时也是任何利益和危害的下游接收者。周到的数据管理和适配应该是任何负责任的人工智能系统开发的一部分。最后需要注意的是,适配好的基础模型的部署与其构建是不同的过程,后者可以被用于研究。
1.1.1 命名我们引入术语基础模型来描述我们正在见证的范式转变,并简要介绍我们做出这一决定的一些理由。现有术语(如预训练模型、自监督模型)部分地捕捉到了这些模型的技术维度,但不能以机器学习领域以外的人可以理解的方式捕捉到范式转变的重要性。语言模型太窄:正如我们所描述的,基础模型的范围远远超出了语言。我们还考虑了通用模型和多用途模型等术语,它们捕捉了这些模型可以服务于多个下游任务的重要方面,但都未能捕捉到它们并未完成、需要在下游任务上适配的特性。诸如任务无关模型之类的术语能捕捉到模型训练的方式,但无法刻画其对下游应用的重要作用。我们选择了新的术语基础模型来描述作为本报告主题的模型和新兴范式。特别地,“基础”一词指定了这些模型所扮演的角色:基础模型本身是不完整的,但作为通用基础,许多限定任务的模型是通过对其适配而构建的。我们还选择了“基础”一词来凸显架构稳定性、安全性的重要性:草草搭建的基础是灾难的根源,而良好构建的基础是未来应用的可靠基石。目前,我们并不完全了解基础模型所提供的基础的性质或质量;我们无法描述基础是否是可靠的。因此,对于依赖基础模型的研究人员、基础模型提供商、应用开发人员、政策制定者和整个社会来说,这是一个关键问题。1.2 社会影响和基础模型生态系统基础模型因其令人印象深刻的表现和能力而在科学上引起了兴趣,但使它们成为研究的关键是它们正在迅速被部署到现实的AI系统应用中,并对人们产生了深远的影响。例如,拥有40亿用户的Google搜索现在依赖于BERT[Devlin et al. 2019]等基础模型5。我们必须停下来问问:这种社会影响的本质是什么?在本报告中,我们解决了这个问题的许多方面:社会不平等的潜在加剧(§5.1:公平)、模型能力增加对经济的影响(§5.5:经济)、计算需求增加对环境的影响(§5.3:环境)、放大虚假信息的潜在问题(§5.2:滥用)、强大的生成能力导致的法律后果(§5.4:合法性),同质化导致的伦理问题,以及在开发和部署基础模型背景下的更广泛的政治经济影响(§5.6:伦理)。鉴于基础模型的多变性质及其未开发的能力,我们如何负责任地预测和解决它们引起的伦理和社会问题?一个反复出现的话题是,讨论部署到特定用户的特定系统的社会影响比讨论基础模型的社会影响更容易,基础模型可以适用于任何数量的不可预见的下游系统。在尝试回答这些问题之前,我们需要做一些基础工作。首先,让我们区分一下基础模型的研究和基础模型的部署。大多数公开的是基础模型研究—体现在学术论文、演示和排行榜上的进展。虽然知识的产出可以在塑造未来方面发挥至关重要的作用,但直接的社会影响是通过这些模型的实际部署产生的,这些模型通常是在私有数据上训练的专有实现。部署有时是采用新的学术工作,如GitHub的Copilot6基于OpenAI的Codex模型[Chen et al. 2021b],但通常是升级现有学术工作(例如,使用BERT的Google搜索)。一方面,研究模型通常没有经过广泛的测试,可能有未知的错误模式,警告标签应该被放在不适合部署的研究模型上;另一方面,实际影响人们生活的已部署基础模型应该接受更严格的测试和审计。5 https://blog.google/products/search/search-language-understanding-bert/
为了进一步理解基础模型的研究和部署,我们必须缩小范围并考虑这些基础模型所在的完整生态系统,从数据创建到实际部署。需要注意的是,基础模型只是AI系统的一个组成部分(尽管是越来越重要的组成部分)。简而言之,我们可以从不同阶段的角度来考虑基础模型的生态系统,扩展之前的训练和适配阶段7。由于人占据了整个阶段过程的两端,我们对社会影响更感兴趣。这种对于生态系统的思考使我们能够意识到,关于基础模型的不同问题(例如,基础模型是否合乎伦理)实际上应该在不同阶段得到回答。6 https://copilot.github.com/
(1) 数据创建:数据创建从根本上讲是一个以人为中心的过程:所有数据都是由人创建的,并且大多数数据至少隐式的与人有关。有时数据是由人们以电子邮件、文章、照片等形式为他人创建的,而有时它是对人体的衡量(例如基因组数据)或对人们生活环境的测量(例如卫星图像)。更需要注意的是,所有数据都有一个所有者,并且它们的创建都是有目的性的(该目的可能包括也可能不包括训练基础模型)。(2) 数据整理:然后将数据整理为数据集。数据没有单一的自然分布;即使从互联网爬取的数据也需要一些选择和后过滤。在遵从法律和伦理约束的同时确保数据的相关性和质量是至关重要的,但同时也是具有挑战性的。虽然这在业界中得到了认可,但在AI研究中却没有得到充分重视(§4.6:数据).(3) 训练:在这些整理好的数据集上训练基础模型8是AI研究中的核心部分,尽管它只是众多阶段中的一个。7 在实践中,生态系统的最后是监控机制,得到的反馈用于重新调整之前的阶段。
(4) 适配:在机器学习研究的背景下,适配是在某些任务上(例如,文档摘要),基于基础模型创建一个新模型。对于部署,适配是创建一个系统,它可能需要许多不同的模块、自定义规则(例如,对输出空间的限制)或分类器(例如,用于毒性分类),以及与其他信息的互补(例如,一个问答模型生成的答案将根据相关文档进行验证)。例如,如果在下游采取适当的预防措施,一个产生错误预测存在问题的模型是可以被接受的。额外的限定应用适配逻辑对于减轻危害是至关重要的。(5) 部署:人工智能系统在部署供人类使用时,会产生直接的社会影响。尽管我们不想部署那些在有问题的数据上训练得到的有潜在危害的基础模型,但允许它们在研究中存在以促进科学理解,可能仍然是有价值的,但人们仍然必须谨慎行事。更一般地说,大规模部署的标准做法是逐步发布,其中部署发生在越来越多的用户身上;这可以部分减轻任何潜在的危害。虽然本报告是关于基础模型的,但重要的是,许多影响来自生态链中其他阶段的决策,并且每个阶段都需要深思熟虑的监测和干预。虽然大型组织机构可能拥有整个生态链,但每个阶段都可以由不同的组织执行,例如,一家在各领域为用户提供定制模型的公司,这些模型可被应用开发人员使用。思考生态系统和评估模型 虽然社会影响取决于整个生态系统,但考虑到许多研究人员和从业者的关注点仅限于训练阶段,因此能够推出基础模型的社会影响仍然很重要。完成这一过程是很困难的,因为基础模型是未完成的中间对象,可以适配许多下游应用,并且有时又是用于不可预见目标的完全不同实体。我们需要的是两件事:(i)一组具有代表性的潜在下游评估的替代指标(§4.4:评价),以及(ii)记录这些指标[Mitchell et al. 2019],类似于金属和塑料等材料的数据表,可适用于许多下游用例。表征基础模型的潜在下游社会影响具有挑战性,需要对技术生态系统和社会都有深入的了解。如果不了解如何部署基础模型,就无法完全评估其危害(§5.1:公平),也无法在不考虑丰富的社会和历史背景的情况下定义评价指标。1.3 基础模型的未来基础模型已经展示了初步潜力,但我们仍处于早期阶段。尽管它们被部署到现实世界中,但这些模型在很大程度上还是研究原型,人们对其知之甚少。甚至围绕基础模型的专业规范—罗伯特·默顿所说的科学精神[Merton 1979]—也不发达。例如,在诸如模型何时“安全”发布或社区应如何应对某些不当方法等基本问题上缺乏共识。鉴于基础模型的未来充满不确定性,一个大问题是:谁来决定这个未来?学科多样性 基础模型背后的技术基于机器学习、优化、NLP、计算机视觉和其他领域数十年的研究。这些技术贡献来自学术界和工业界的研究实验室。然而,构建基础模型本身的研究几乎只发生在工业界—谷歌、Facebook、微软或华为等大型科技公司,或OpenAI、AI21 Labs等初创公司,尽管AI2是一个明显的例外[Peters et al. 2018; Zellers et al. 2019]。技术进步的迅猛步伐和中心化造成的壁垒引起了强烈的关注,除了技术学家之外,还需要人文主义者和社会科学家的关注。我们不应该依赖于伦理和社会后果的事后审计,只有在做出技术架构和部署决策之后才进行。相反,我们需要从一开始就将社会影响和伦理设计深深地融入基础模型及其周围生态系统的技术开发中。学术机构的独特之处在于它们将最广泛的学科集中在一个屋檐下,从而将计算机科学家、社会科学家、经济学家、伦理学家、法律学者等聚集在一起。鉴于学科多样性在理解和解决综合技术、伦理、法律、社会和政治多方面问题的重要性 [Hong and Page 2004; Solomon 2006; Steel et al. 2018],因此我们认为学术界在开发基础模型方面发挥着至关重要的作用,以促进其社会效益和减轻其社会危害,以及确定生态系统每个阶段采取行动的背景(§1.2:生态系统)从数据管理到部署都应该被严格管控。激励 基础模型的设计、开发和部署阶段带来的政治经济学效应为每个阶段的决策提供了不可避免的激励结构。人们和机构如何对激励做出反应是经济学的基本课程。市场驱动的商业激励可以很好地与社会效益保持一致:在搜索各种潜在用例的同时,使基础模型更加准确、可靠、安全和高效,可以产生大量的社会效用。然而,商业激励也可能导致市场失活和在股东无法获得创新价值的领域投资不足的问题。正如制药业几乎没有动力将大量资源投入到疟疾治疗的研究和开发中,因为穷人买不起药9,科技行业也没有动力将大量资源投入到旨在改善贫困和边缘化状况的技术上[Reich et al. 2021]。此外,商业激励可能导致公司忽视社会外部条件 [Acemoglu 2021; Reich et al. 2021],例如劳动力的技术转移、民主所需的信息生态系统的健康、计算资源的环境成本,以及以利润为导向向非民主政权出售技术。最后,任何一家公司都没有什么动力去创建一个开放的、去中心化的生态系统来开发些鼓励人们广泛参与建设的基础模型。8 一个基础模型 (例如 Codex) 在训练时以另一个基础模型 (例如 GPT-3) 为起点。
相比之下,大学长期而根深蒂固的研究使命是知识的生产和传播以及全球公共产品的创造[Kerr 2001; Rhoten and Calhoun 2011; Nussbaum 2010]。我们相信,学术界在塑造基础模型的发展方面处于独特的地位,以确保我们捕捉到具有潜在巨大社会效益的方向,否则这些方向可能不会被行业优先考虑。可访问性的丧失 不幸的是,由于可访问性的丧失,学术界无法充分参与其中。深度学习革命经常被忽视的影响之一是可复现性和开放科学的增加:公开发布代码和数据集越来越成为常态,诸如TensorFlow [Abadi et al. 2016]、PyTorch[Paszke et al. 2019]等工具包使人们更容易协同合作以及构建各自的模型。诸如ML Reproducibility Challenge10倡议,主要会议采用的可重复性检查清单[Pineau et al. 2020],以及CodaLab Worksheets11等平台,都积极促进了针对可复现性的标准的完善。这导致了技术上创新和进步的激增。9 参见 https://www.gatesfoundation.org/about/our-role.
基础模型开始逆转这一积极趋势。某些模型(例如 GPT-3)根本不会公开发布(只对少数人提供API访问权限)。甚至一些数据集(例如 GPT-2)也没有公开发布。虽然可以使用经过训练的模型(例如 BERT),但由于计算成本过高且工程要求复杂,绝大多数AI研究人员实际上无法对基础模型进行完整的训练。在学术经费允许的范围内,一些有意义的研究仍然可以通过训练较小的模型来完成。事实上,当规模不同造成的差异可量化时(例如,准确率上升),缩放定律 (scaling laws)[Kaplan et al. 2020]所预测的规律使得这种方式成为一种行之有效的策略。然而,由于这些基础模型的自然性质,诸如上下文学习等能力只能在足够大的模型中实现,因此我们甚至需要足够大的模型规模才能够提出正确的问题。研究公开发布的现有模型可能也是行之有效的;事实上,目前已经存在一个包含 NLP在内的大型子社区,正在探索这类模型[Rogers et al. 2020; Manning et al. 2020]。研究现有模型对于改善下游应用或识别现有缺陷(例如,偏见)很有用,但这可能不足以让我们为基础模型设计更好的架构或训练目标,从而修复这些缺陷(例如,减轻偏见)。值得反思的是,当今有多少NLP研究是基于BERT,这样一种特殊(且有些随意)的基础模型的。鉴于有必要将社会意识和伦理设计融入这些模型的构建过程中,我们可能需要构建看起来与现有模型完全不同的基础模型。这将需要大规模的密集实验。虽然一些社区正在尝试训练大型基础模型,例如EleutherAI12和HuggingFace的 BigScience项目13,然而行业训练的私有模型与向社区开放的模型之间的差距可能仍然很大。此外,如今的初创公司(OpenAI、Anthropic、AI21 Labs 等)比学术界拥有更多资源,因此有能力训练最大规模的基础模型(例如OpenAI的GPT-3)。然而,大型科技公司在资源方面处于更高的水平,尤其是在基础设施、用户以及源于其市场地位的数据方面。基础模型的基础中心化性质意味着开发它们的门槛将继续上升,因此即使是初创公司也会发现难以进行竞争,尽管他们足够灵活。这一趋势反映在搜索引擎的发展中[Radinsky 2015]。10 https://paperswithcode.com/rc2020
11 https://worksheets.codalab.org/
缩小资源缺口的一种方法是政府将其视为公共基础设施进行投资。从哈勃太空望远镜和大型强子对撞机等大科学项目中我们能够发现,大量投资将使得基础科学发现变为可能。我们可以想象一个类似的计算科学基础设施,有关基础模型的学术研究将从中受益。美国新生的National Research Cloud计划14就是朝这个方向迈出的一步。12 https://www.eleuther.ai/
13 https://bigscience.huggingface.co/
志愿计算可以作为另一种补充方案,该方案中数十亿计算设备(节点)中的任何一个都可以连接到中央服务器贡献算力。Folding@home项目已在蛋白质动力学模拟方面成功实施了这种的方法[Beberg et al. 2009]。最近,Learning@home项目又试图利用志愿计算来训练基础模型[Ryabinin and Gusev 2020]。节点之间的高延迟连接以及训练基础模型的高带宽要求使其成为一个开放的技术挑战。总结 目前存在巨大的经济激励来推动基础模型能力和规模的提升,因此可以预计未来几年相关技术会稳步发展。但是,一项主要依赖涌现的行为的技术是否适合广泛部署给民众目前尚不清楚。能够清楚的是我们需要谨慎行事,并且现在应着手建立专业规范,这将使可靠的基础模型研究和部署成为可能。学术界和工业界需要在此方面进行合作:工业界会就最终如何部署基础模型做出具体决策,但鉴于学术界的学科多样性以及注重知识生产和社会效益的非商业激励性,我们也应该依靠其为基础模型的开发和部署提供独特的指导,这在技术方面和伦理方面都是有根据的。1.4 概述2021年3月,我们在斯坦福大学创建了一个由对基础模型的某些方面感兴趣的学生、教师和研究人员组成的非正式社区15。该社区不仅包括AI研究人员,还包括那些渴望将基础模型应用于各自领域(例如医疗保健和法律),以及那些对社会问题(例如伦理和经济)感兴趣的人。随着讨论的进行,我们发现相互之间在技术如何运作、行业如何开发基础模型、如何思考伦理问题等方面的理解存在很大差距,并且现有文献只涉及零碎的思考。因此,我们希望更全面地了解基础模型,识别机会和风险,并为基础模型未来可靠的发展建立一个建设性的愿景。14 https://hai.stanford.edu/policy/national-research-cloud
这份报告的撰写是一个实验:我们有超过100名来自不同背景的人聚在一起撰写这份涵盖了基础模型各个方面的报告。这份报告有很大一部分是对现有工作的调查,但通过多次讨论,我们决定将其统一在一份报告中,以强调所有跨学科联系。结构 报告分为26个章节,每个章节讨论基础模型的一个方面。尽管各章节之间有许多联系,他们主要分为四个主题:能力(§2:能力)、应用(§3:应用)、技术(§4:技术)和社会(§5:社会)。这些联系强调了一种综合的方法论,在这种方法论中,技术和能力的开发方式很大程度上受社会问题的影响,同时受到模型应用的启发,也扎根于模型应用。虽然我们尽可能将围绕基础模型的大部分重要主题容纳在内,但在该领域发展迅速的情况下,这份报告将不可避免地不完整。例如,许多应用场景(例如,自然科学、音乐、金融、农业)不包括在内,尽管它们可能会受到我们选择讨论的应用领域的影响。除此之外,研究基础模型如何与神经科学、认知科学和心理学结合以解释智力和帮助计算社会学理解社会也是有趣的议题。作者贡献 Percy Liang提出了整个报告的框架和结构。他和Rishi Bommasani共同领导撰写工作,并为各个章节提供指导。Drew A. Hudson创建了报告中的所有图表,并与每个章节的作者讨论了图表的结构和内容。本报告的26个章节每个都由作者中的一部分撰写,他们的名字列在每个章节的开头。然而,由于有许多讨论跨越多个章节,因此可能会有其他的作者实际上也对某个章节作出贡献。最后需要注意,并非所有作者都持有本报告中表达的所有观点。1.4.1 能力概述基础模型具有应用可以利用的各种能力。我们选择对以下五种能力进行论述:处理不同模态的能力(例如,语言、视觉)、影响物理世界的能力(例如,机器人学)、推理能力、与人类交互的能力(交互)。最后,我们以基础模型能力存在的可能限制的哲学性讨论作为结束。15 这个社区导致了 Center for Research on Foundation Models (CRFM) 的建立, 它是斯坦福大学 Human-Centered AI 研 究所 (HAI) 的一项新的跨学科计划。
参考文献查看参考文献请点击“阅读原文”。
本期责任编辑:刘 铭
本期编辑:张 馨哈尔滨工业大学社会计算与信息检索研究中心
理解语言,认知社会
以中文技术,助民族复兴
Recommend
-
19
作者:Peter Bloem 原文:TRANSFORMERS FROM SCRATCH 链接:http://www.peterbloem.nl/blog/transformers 代码:https://github.com/pbloem/former 译者:哈工大SCIR 徐啸,顾宇轩 编者按:
-
24
58学院直播间:目前比特币市场风险和机遇并存,散户交易需要注意控制风险 2021-01-07 18:02:00 今日下午5点,58学院第二十九期AMA《打造区块链底层金融设施》邀请到了链上ChainUP Waas联盟合伙人Rose Chen做客直播间,Ro...
-
10
来源:吴说区块链吴说作者 | 谈叔 本期编辑 | Colin Wu 恰逢其时、完美的环保概念,顶级的领导团队与VC,以及主...
-
12
房地产“新常态”下的机遇与风险 本文将以笔者多年观察房地产市场的认知、研究及对宏观政策深入的理解为基础为大家提供一些观点,仅供参考。 当前,很多投资者无法正视房地产市场的“新常态”,而得出很多片面的观点。本文将以笔者多年观察...
-
8
摘要: 波卡平行链拍卖预计于11月12日凌晨启动 作者:陈一晚风出品:鸵鸟区块链随着Kusama网络第二轮插槽拍卖的结束,波卡
-
3
2021-11-13 03:49 美SEC委员剖析DeFi风险、监管和机遇:会帮助推动负责任的创新 撰文:卡罗琳·A·克伦肖,美国证券交易委员会委员编译:Perry Wang无论是在新闻、社交媒体、流...
-
11
基础模型的机遇与风险 (二) 原文:On the Opportunities and Risks of Foundation Models链接:https://arxiv.org/pdf/2108.07258.pdf译者:哈工大 SCIR 张伟男,朱庆福,聂润泽,牟虹霖,赵伟翔,高靖龙,孙一恒,王昊淳,车万翔(所有...
-
12
赛尔译文 | 基础模型的机遇与风险 (三) ...
-
7
基础模型的机遇与风险 (四) 原文:On the Opportunities and Risks of Foundation Models链接:https://arxiv.org/pdf/2108.07258.pdf译者:哈工大 SCIR 张伟男,朱庆福,聂润泽,牟虹霖,赵伟翔,高靖龙,孙一恒,王昊淳,车万翔(所有...
-
8
赛尔译文|基础模型的风险与机遇(五) ...
About Joyk
Aggregate valuable and interesting links.
Joyk means Joy of geeK