

Python 人脸表情识别
source link: https://blog.csdn.net/weixin_46628481/article/details/121735980
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

环境搭建可查看Python人脸识别微笑检测
数据集可在https://inc.ucsd.edu/mplab/wordpress/index.html%3Fp=398.html获取
数据如下:
一、图片预处理
import dlib # 人脸识别的库dlib
import numpy as np # 数据处理的库numpy
import cv2 # 图像处理的库OpenCv
import os
# dlib预测器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
# 读取图像的路径
path_read = ".\ImageFiles\\files"
num=0
for file_name in os.listdir(path_read):
#aa是图片的全路径
aa=(path_read +"/"+file_name)
#读入的图片的路径中含非英文
img=cv2.imdecode(np.fromfile(aa, dtype=np.uint8), cv2.IMREAD_UNCHANGED)
#获取图片的宽高
img_shape=img.shape
img_height=img_shape[0]
img_width=img_shape[1]
# 用来存储生成的单张人脸的路径
path_save=".\ImageFiles\\files1"
# dlib检测
dets = detector(img,1)
print("人脸数:", len(dets))
for k, d in enumerate(dets):
if len(dets)>1:
continue
num=num+1
# 计算矩形大小
# (x,y), (宽度width, 高度height)
pos_start = tuple([d.left(), d.top()])
pos_end = tuple([d.right(), d.bottom()])
# 计算矩形框大小
height = d.bottom()-d.top()
width = d.right()-d.left()
# 根据人脸大小生成空的图像
img_blank = np.zeros((height, width, 3), np.uint8)
for i in range(height):
if d.top()+i>=img_height:# 防止越界
continue
for j in range(width):
if d.left()+j>=img_width:# 防止越界
continue
img_blank[i][j] = img[d.top()+i][d.left()+j]
img_blank = cv2.resize(img_blank, (200, 200), interpolation=cv2.INTER_CUBIC)
cv2.imencode('.jpg', img_blank)[1].tofile(path_save+"\\"+"file"+str(num)+".jpg") # 正确方法
运行结果:
二、数据集划分
import os, shutil
# 原始数据集路径
original_dataset_dir = '.\ImageFiles\\files1'
# 新的数据集
base_dir = '.\ImageFiles\\files2'
os.mkdir(base_dir)
# 训练图像、验证图像、测试图像的目录
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)
train_cats_dir = os.path.join(train_dir, 'smile')
os.mkdir(train_cats_dir)
train_dogs_dir = os.path.join(train_dir, 'unsmile')
os.mkdir(train_dogs_dir)
validation_cats_dir = os.path.join(validation_dir, 'smile')
os.mkdir(validation_cats_dir)
validation_dogs_dir = os.path.join(validation_dir, 'unsmile')
os.mkdir(validation_dogs_dir)
test_cats_dir = os.path.join(test_dir, 'smile')
os.mkdir(test_cats_dir)
test_dogs_dir = os.path.join(test_dir, 'unsmile')
os.mkdir(test_dogs_dir)
# 复制1000张笑脸图片到train_c_dir
fnames = ['file{}.jpg'.format(i) for i in range(1,900)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(train_cats_dir, fname)
shutil.copyfile(src, dst)
fnames = ['file{}.jpg'.format(i) for i in range(900, 1350)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(validation_cats_dir, fname)
shutil.copyfile(src, dst)
# Copy next 500 cat images to test_cats_dir
fnames = ['file{}.jpg'.format(i) for i in range(1350, 1800)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(test_cats_dir, fname)
shutil.copyfile(src, dst)
fnames = ['file{}.jpg'.format(i) for i in range(2127,3000)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(train_dogs_dir, fname)
shutil.copyfile(src, dst)
# Copy next 500 dog images to validation_dogs_dir
fnames = ['file{}.jpg'.format(i) for i in range(3000,3304)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(validation_dogs_dir, fname)
shutil.copyfile(src, dst)
# # Copy next 500 dog images to test_dogs_dir
# fnames = ['file{}.jpg'.format(i) for i in range(3000,3878)]
# for fname in fnames:
# src = os.path.join(original_dataset_dir, fname)
# dst = os.path.join(test_dogs_dir, fname)
# shutil.copyfile(src, dst)
运行结果:
三、识别笑脸
- 模式构建:
#创建模型
from keras import layers
from keras import models
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.summary()#查看
- 进行归一化
#归一化
from keras import optimizers
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1./255)
validation_datagen=ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
# 目标文件目录
train_dir,
#所有图片的size必须是150x150
target_size=(150, 150),
batch_size=20,
# Since we use binary_crossentropy loss, we need binary labels
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary')
test_generator = test_datagen.flow_from_directory(test_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary')
for data_batch, labels_batch in train_generator:
print('data batch shape:', data_batch.shape)
print('labels batch shape:', labels_batch)
break
#'smile': 0, 'unsmile': 1
#数据增强
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
#数据增强后图片变化
import matplotlib.pyplot as plt
# This is module with image preprocessing utilities
from keras.preprocessing import image
train_smile_dir = './ImageFiles//files2//train//smile/'
fnames = [os.path.join(train_smile_dir, fname) for fname in os.listdir(train_smile_dir)]
img_path = fnames[3]
img = image.load_img(img_path, target_size=(150, 150))
x = image.img_to_array(img)
x = x.reshape((1,) + x.shape)
i = 0
for batch in datagen.flow(x, batch_size=1):
plt.figure(i)
imgplot = plt.imshow(image.array_to_img(batch[0]))
i += 1
if i % 4 == 0:
break
plt.show()
- 创建网络:
#创建网络
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dropout(0.5))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])
#归一化处理
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
# This is the target directory
train_dir,
# All images will be resized to 150x150
target_size=(150, 150),
batch_size=32,
# Since we use binary_crossentropy loss, we need binary labels
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=32,
class_mode='binary')
history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=60,
validation_data=validation_generator,
validation_steps=50)
model.save('smileAndUnsmile1.h5')
#数据增强过后的训练集与验证集的精确度与损失度的图形
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
- 单张图片测试:
# 单张图片进行判断 是笑脸还是非笑脸
import cv2
from keras.preprocessing import image
from keras.models import load_model
import numpy as np
#加载模型
model = load_model('smileAndUnsmile1.h5')
#本地图片路径
img_path='test.jpg'
img = image.load_img(img_path, target_size=(150, 150))
img_tensor = image.img_to_array(img)/255.0
img_tensor = np.expand_dims(img_tensor, axis=0)
prediction =model.predict(img_tensor)
print(prediction)
if prediction[0][0]>0.5:
result='非笑脸'
else:
result='笑脸'
print(result)
- 摄像头测试:
#检测视频或者摄像头中的人脸
import cv2
from keras.preprocessing import image
from keras.models import load_model
import numpy as np
import dlib
from PIL import Image
model = load_model('smileAndUnsmile1.h5')
detector = dlib.get_frontal_face_detector()
video=cv2.VideoCapture(0)
font = cv2.FONT_HERSHEY_SIMPLEX
def rec(img):
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
dets=detector(gray,1)
if dets is not None:
for face in dets:
left=face.left()
top=face.top()
right=face.right()
bottom=face.bottom()
cv2.rectangle(img,(left,top),(right,bottom),(0,255,0),2)
img1=cv2.resize(img[top:bottom,left:right],dsize=(150,150))
img1=cv2.cvtColor(img1,cv2.COLOR_BGR2RGB)
img1 = np.array(img1)/255.
img_tensor = img1.reshape(-1,150,150,3)
prediction =model.predict(img_tensor)
if prediction[0][0]>0.5:
result='unsmile'
else:
result='smile'
cv2.putText(img, result, (left,top), font, 2, (0, 255, 0), 2, cv2.LINE_AA)
cv2.imshow('Video', img)
while video.isOpened():
res, img_rd = video.read()
if not res:
break
rec(img_rd)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video.release()
cv2.destroyAllWindows()
运行结果:
四、Dlib提取人脸特征识别笑脸和非笑脸
import cv2 # 图像处理的库 OpenCv
import dlib # 人脸识别的库 dlib
import numpy as np # 数据处理的库 numpy
class face_emotion():
def __init__(self):
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
self.cap = cv2.VideoCapture(0)
self.cap.set(3, 480)
self.cnt = 0
def learning_face(self):
line_brow_x = []
line_brow_y = []
while(self.cap.isOpened()):
flag, im_rd = self.cap.read()
k = cv2.waitKey(1)
# 取灰度
img_gray = cv2.cvtColor(im_rd, cv2.COLOR_RGB2GRAY)
faces = self.detector(img_gray, 0)
font = cv2.FONT_HERSHEY_SIMPLEX
# 如果检测到人脸
if(len(faces) != 0):
# 对每个人脸都标出68个特征点
for i in range(len(faces)):
for k, d in enumerate(faces):
cv2.rectangle(im_rd, (d.left(), d.top()), (d.right(), d.bottom()), (0,0,255))
self.face_width = d.right() - d.left()
shape = self.predictor(im_rd, d)
mouth_width = (shape.part(54).x - shape.part(48).x) / self.face_width
mouth_height = (shape.part(66).y - shape.part(62).y) / self.face_width
brow_sum = 0
frown_sum = 0
for j in range(17, 21):
brow_sum += (shape.part(j).y - d.top()) + (shape.part(j + 5).y - d.top())
frown_sum += shape.part(j + 5).x - shape.part(j).x
line_brow_x.append(shape.part(j).x)
line_brow_y.append(shape.part(j).y)
tempx = np.array(line_brow_x)
tempy = np.array(line_brow_y)
z1 = np.polyfit(tempx, tempy, 1)
self.brow_k = -round(z1[0], 3)
brow_height = (brow_sum / 10) / self.face_width # 眉毛高度占比
brow_width = (frown_sum / 5) / self.face_width # 眉毛距离占比
eye_sum = (shape.part(41).y - shape.part(37).y + shape.part(40).y - shape.part(38).y +
shape.part(47).y - shape.part(43).y + shape.part(46).y - shape.part(44).y)
eye_hight = (eye_sum / 4) / self.face_width
if round(mouth_height >= 0.03) and eye_hight<0.56:
cv2.putText(im_rd, "smile", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 2,
(0,255,0), 2, 4)
if round(mouth_height<0.03) and self.brow_k>-0.3:
cv2.putText(im_rd, "unsmile", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 2,
(0,255,0), 2, 4)
cv2.putText(im_rd, "Face-" + str(len(faces)), (20,50), font, 0.6, (0,0,255), 1, cv2.LINE_AA)
else:
cv2.putText(im_rd, "No Face", (20,50), font, 0.6, (0,0,255), 1, cv2.LINE_AA)
im_rd = cv2.putText(im_rd, "S: screenshot", (20,450), font, 0.6, (255,0,255), 1, cv2.LINE_AA)
im_rd = cv2.putText(im_rd, "Q: quit", (20,470), font, 0.6, (255,0,255), 1, cv2.LINE_AA)
if (cv2.waitKey(1) & 0xFF) == ord('s'):
self.cnt += 1
cv2.imwrite("screenshoot" + str(self.cnt) + ".jpg", im_rd)
# 按下 q 键退出
if (cv2.waitKey(1)) == ord('q'):
break
# 窗口显示
cv2.imshow("Face Recognition", im_rd)
self.cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
my_face = face_emotion()
my_face.learning_face()
运行结果:
Recommend
-
169
人脸识别技术商用迎井喷期,专家建议完善行业标准保护隐私马晓澄张璇汪奥娜/经济参考报近期,“刷脸”成为了热词,人脸识别技术不断进入大众视野。苹果新机iPhoneX具备“刷脸”解锁功能,并且可运用到ApplePay以及各种需要身份验证的App中
-
123
妙投会员2017-10-30 17:26人脸识别技术将改写人类社会的游戏规则,这事会率先发生在中国文章所属专栏 深案例
-
129
奇客Solidot | 国有基金投资人脸识别创业公司 solidot新版网站常见问题,请点击这里查看。
-
60
如今只需用Python的数四十行代码就可以完成人脸定位!小编用马蓉照片做一个五官定位!固然python库使用到人工智能定位五官。让机器学习上千张人脸来进行特征提取。然后用这个模子在新的照片中自动找出五官!
-
14
机器之心分析师网络 作者:周宇 编辑:Joni Zhong 真实场景下的表情识别一直是令众多研究者十分头疼的课题。这个任务中,尤为令人抓狂的是表情数据集中普遍存在着许多坏的数...
-
23
人脸识别技术介绍和表情识别最新研究 Original...
-
21
近两年,Python在众多编程语言中的热度一直稳居前五,热门程度可见一斑。Python 拥有很活跃的社区和丰富的第三方库,Web 框架、爬虫框架、数据分析框架、机器学习框架等。良好的开源社区生态,让它在各个领域(例如计算机视觉、...
-
10
分享一个人脸表情识别 (FER) 的资源列表,包含数据集、挑战赛、顶会顶刊论文和相关牛人主页等。 作者:EvelynFan 来源:EvelynFan/AWESOME-FER 目录
-
9
【Python】基于人脸识别的考勤系统 [PC端部分] 一、项目简介 本项目编程语言Python3.6,编程工具pycharm,其他工具QT Designer、Navicat,表单信息保存在本地MySQL数据库中,人脸识别算法主要用的OpenCV。 目前,已实现以下...
-
7
Python可以从图像或视频中检测和识别你的脸。 人脸检测与识别是计算机视觉...
About Joyk
Aggregate valuable and interesting links.
Joyk means Joy of geeK