

手把手教你opencv做人脸识别(附源码+文档)
source link: https://blog.csdn.net/weixin_46211269/article/details/120118177
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

pip install opencv-python
python3.9
pycharm2020
人狠话不多,直接上代码,注释在代码里面,不说废话。
二、使用Haar级联进行人脸检测
测试案例:
代码:(记得自己到下载地址下载对应的xml)
# coding=gbk
"""
作者:川川
@时间 : 2021/9/5 16:38
https://github.com/opencv/opencv/tree/master/data/haarcascades
"""
import cv2
# 待检测的图片路径
imagepath="2.jpg"
image = cv2.imread(imagepath)#读取图片
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)#图像转换为灰度图:
face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')#加载使用人脸识别器
faces = face_cascade.detectMultiScale(gray)#检测图像中的所有面孔
#为每个人脸绘制一个蓝色矩形
for x, y, width, height in faces:
# 这里的color是 蓝 黄 红,与rgb相反,thickness设置宽度
cv2.rectangle(image, (x, y), (x + width, y + height), color=(255, 0, 0), thickness=2)
# 最后,让我们保存新图像
cv2.imwrite("beauty_detected.jpg", image)
效果:
效果可以看出这个效果并不是很好。
三、Haar级联结合摄像头
代码:(还是用的前面得xml)
# coding=gbk
"""
摄像头人脸识别
作者:川川
@时间 : 2021/9/5 17:15
Haar级联结合摄像头
"""
import cv2
#创建新的cam对象
cap = cv2.VideoCapture(0,cv2.CAP_DSHOW)
#初始化人脸识别器(默认的人脸haar级联)
face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')
while True:
# 从摄像头读取图像
_, image = cap.read()
# 转换为灰度
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 检测图像中的所有人脸
faces = face_cascade.detectMultiScale(image_gray, 1.3, 5)
# 为每个人脸绘制一个蓝色矩形
for x, y, width, height in faces:
cv2.rectangle(image, (x, y), (x + width, y + height), color=(255, 0, 0), thickness=2)
cv2.imshow("image", image)
if cv2.waitKey(1) == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
效果:
四、使用SSD的人脸检测
# coding=gbk
"""
图片人脸识别
作者:川川
@时间 : 2021/9/5 17:22
"""
import cv2
import numpy as np
# 下载链接:https://raw.githubusercontent.com/opencv/opencv/master/samples/dnn/face_detector/deploy.prototxt
prototxt_path = r"./deploy.prototxt.txt"
# 下载链接:https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20180205_fp16/res10_300x300_ssd_iter_140000_fp16.caffemodel
model_path =r"./res10_300x300_ssd_iter_140000_fp16.caffemodel"
model = cv2.dnn.readNetFromCaffe(prototxt_path, model_path)
image = cv2.imread("2.jpg")
h, w = image.shape[:2]
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300),(104.0, 177.0, 123.0))
model.setInput(blob)
output = np.squeeze(model.forward())
font_scale = 1.0
for i in range(0, output.shape[0]):
confidence = output[i, 2]
if confidence > 0.5:
box = output[i, 3:7] * np.array([w, h, w, h])
start_x, start_y, end_x, end_y = box.astype(np.int)
cv2.rectangle(image, (start_x, start_y), (end_x, end_y), color=(255, 0, 0), thickness=2)
cv2.putText(image, f"{confidence*100:.2f}%", (start_x, start_y-5), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 0, 0), 2)
cv2.imshow("image", image)
cv2.waitKey(0)
cv2.imwrite("beauty_detected.jpg", image)
效果:
我们可以看到现在的识别效果非常好了。
五、 SSD结合摄像头人脸检测
# coding=gbk
"""
作者:川川
@时间 : 2021/9/5 17:26
SSD结合摄像头的人脸检测
"""
import cv2
import numpy as np
prototxt_path = "deploy.prototxt.txt"
model_path = "res10_300x300_ssd_iter_140000_fp16.caffemodel"
model = cv2.dnn.readNetFromCaffe(prototxt_path, model_path)
cap = cv2.VideoCapture(0)
while True:
_, image = cap.read()
h, w = image.shape[:2]
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), (104.0, 177.0, 123.0))
model.setInput(blob)
output = np.squeeze(model.forward())
font_scale = 1.0
for i in range(0, output.shape[0]):
confidence = output[i, 2]
if confidence > 0.5:
box = output[i, 3:7] * np.array([w, h, w, h])
start_x, start_y, end_x, end_y = box.astype(np.int)
cv2.rectangle(image, (start_x, start_y), (end_x, end_y), color=(255, 0, 0), thickness=2)
cv2.putText(image, f"{confidence*100:.2f}%", (start_x, start_y-5), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 0, 0), 2)
cv2.imshow("image", image)
if cv2.waitKey(1) == ord("q"):
break
cv2.destroyAllWindows()
cap.release()
效果:
可以发现SSD效果特别好!
如果你想更深了解这些原理,去读一下opencv文档吧,中文官方文档如下:
https://woshicver.com/
在很多人调用xm会遇到一些坑,我在这里说一下,读取xml的时候用相对路径./这种,参考我的,建议不要路径中出现中文,其它没啥了。如果对你有帮助,三连支持一下,谢谢。
Recommend
-
55
-
26
♚ 作者:沂水寒城,CSDN博客专家,个人研究方向:机器学习、深度学习、NLP、CV Blog: http://yishuihancheng.blog.cs...
-
15
原理:使用GT人脸库做样本,VS2010下使用openCV2.44自带的Haar算法检测人脸区域,ASM Library特征检测,然后使用YCrCb颜色空间做肤色检测,再用LBP+Gabor小波提取特征,最小邻近距离做分类识别。 1、GT人脸库
-
9
【Python】基于人脸识别的考勤系统 [PC端部分] 一、项目简介 本项目编程语言Python3.6,编程工具pycharm,其他工具QT Designer、Navicat,表单信息保存在本地MySQL数据库中,人脸识别算法主要用的OpenCV。 目前,已实现以下...
-
10
技术中心教你手把手识别图片中的文字 大家好,我是中心君。 相信大家在学习、工作中经常会遇到需要识别图片中文字的需求。那怎么样快速解决呢?今天就给大家一些实用的小技巧。 微软的OneNote 使用OneNote,只需将图片贴到OneN...
-
10
本篇文章以电动自行车充电桩为例,解构MRD文档写作标准,供大家参考学习。 案例涉及MRD流程、ToG市场概念、电瓶车行业市场等领域内容。 ...
-
9
手把手教你撰写交互设计文档(保姆级教程) 北沐而川 2021-08-20 4 评论...
-
8
手把手教你15分钟搭建人脸戴口罩识别软硬件系统 - 飞桨PaddlePaddle的个人空间 - OSCHINA - 中文开源技术交流社区 佛山一家专门生产轴承的厂商最近遇到了些难题,随着厂子规模的不断扩大,生产流水线也在扩充。质检线员工不断增加,但...
-
3
今天和大家一起来看一下在LabVIEW中如何使用OpenCV DNN模块实现手写数字识别 一、OpenCV DNN模块 1.OpenCV DNN简介 OpenCV中的DNN(Deep Neural Network module)模块是专门用来实现深度神经网...
-
5
上一篇和大家一起分享了如何使用LabVIEW OpenCV dnn实现手写数字识别,今天我们一起来看一下如何使用LabVIEW OpenCV dnn实现图像分类。 一、什么是图像分类? 1、图像分类的概念...
About Joyk
Aggregate valuable and interesting links.
Joyk means Joy of geeK