4

计算机科学家发现关键研究算法的局限性

 3 years ago
source link: https://www.solidot.org/story?sid=68625
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

计算机科学家发现关键研究算法的局限性

wanwan (42055)发表于 2021年08月20日 17时57分 星期五 新浪微博分享 豆瓣分享 来自部门
现代应用研究中的诸多领域,都严重依赖于一种被称为梯度下降(gradient descent)的关键算法。这是一种常被用于寻找特定数学函数最大值或最小值的方法,也被称为函数优化方法。梯度下降可用于计算多种任务,包括哪种产品制造方式利润最高、哪种员工轮班机制最优等等。尽管如此,研究人员一直没能彻底理解这种算法的核心意义。如今最新研究终于给出了解释,确定梯度下降从本质上是在解决一个具备固有困难性的计算问题。从这个角度来看,最新结果为梯度下降找到了效能上限,因此研究人员不可能在实际应用中获得超出这个极限的性能结果。论文发表在预印本网站 arXiv 上。

Recommend

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK