

usize - Rust
source link: https://doc.rust-lang.org/stable/std/primitive.usize.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

impl usize
[src]
pub const MIN: usize
1.43.0[src][−][−]
The smallest value that can be represented by this integer type.
Examples
Basic usage:
assert_eq!(usize::MIN, 0);Run
pub const MAX: usize
1.43.0[src][−][−]
The largest value that can be represented by this integer type.
Examples
Basic usage:
assert_eq!(usize::MAX, 18446744073709551615);Run
pub const BITS: u32
1.53.0[src][−][−]
pub fn from_str_radix(src: &str, radix: u32) -> Result<usize, ParseIntError>
[src][−]
Converts a string slice in a given base to an integer.
The string is expected to be an optional +
sign
followed by digits.
Leading and trailing whitespace represent an error.
Digits are a subset of these characters, depending on radix
:
0-9
a-z
A-Z
Panics
This function panics if radix
is not in the range from 2 to 36.
Examples
Basic usage:
assert_eq!(usize::from_str_radix("A", 16), Ok(10));Run
pub const fn count_ones(self) -> u32
1.0.0 (const: 1.32.0)[src][−]
Returns the number of ones in the binary representation of self
.
Examples
Basic usage:
let n = 0b01001100usize; assert_eq!(n.count_ones(), 3);Run
pub const fn count_zeros(self) -> u32
1.0.0 (const: 1.32.0)[src][−]
Returns the number of zeros in the binary representation of self
.
Examples
Basic usage:
assert_eq!(usize::MAX.count_zeros(), 0);Run
pub const fn leading_zeros(self) -> u32
1.0.0 (const: 1.32.0)[src][−]
Returns the number of leading zeros in the binary representation of self
.
Examples
Basic usage:
let n = usize::MAX >> 2; assert_eq!(n.leading_zeros(), 2);Run
pub const fn trailing_zeros(self) -> u32
1.0.0 (const: 1.32.0)[src][−]
Returns the number of trailing zeros in the binary representation
of self
.
Examples
Basic usage:
let n = 0b0101000usize; assert_eq!(n.trailing_zeros(), 3);Run
pub const fn leading_ones(self) -> u32
1.46.0 (const: 1.46.0)[src][−]
Returns the number of leading ones in the binary representation of self
.
Examples
Basic usage:
let n = !(usize::MAX >> 2); assert_eq!(n.leading_ones(), 2);Run
pub const fn trailing_ones(self) -> u32
1.46.0 (const: 1.46.0)[src][−]
Returns the number of trailing ones in the binary representation
of self
.
Examples
Basic usage:
let n = 0b1010111usize; assert_eq!(n.trailing_ones(), 3);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn rotate_left(self, n: u32) -> usize
1.0.0 (const: 1.32.0)[src][−]Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting integer.
Please note this isn’t the same operation as the <<
shifting operator!
Examples
Basic usage:
let n = 0xaa00000000006e1usize; let m = 0x6e10aa; assert_eq!(n.rotate_left(12), m);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn rotate_right(self, n: u32) -> usize
1.0.0 (const: 1.32.0)[src][−]Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn’t the same operation as the >>
shifting operator!
Examples
Basic usage:
let n = 0x6e10aausize; let m = 0xaa00000000006e1; assert_eq!(n.rotate_right(12), m);Run
pub const fn swap_bytes(self) -> usize
1.0.0 (const: 1.32.0)[src][−]
Reverses the byte order of the integer.
Examples
Basic usage:
let n = 0x1234567890123456usize; let m = n.swap_bytes(); assert_eq!(m, 0x5634129078563412);Run
#[must_use]
pub const fn reverse_bits(self) -> usize
1.37.0 (const: 1.37.0)[src][−]Reverses the order of bits in the integer. The least significant bit becomes the most significant bit, second least-significant bit becomes second most-significant bit, etc.
Examples
Basic usage:
let n = 0x1234567890123456usize; let m = n.reverse_bits(); assert_eq!(m, 0x6a2c48091e6a2c48); assert_eq!(0, 0usize.reverse_bits());Run
pub const fn from_be(x: usize) -> usize
1.0.0 (const: 1.32.0)[src][−]
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
Examples
Basic usage:
let n = 0x1Ausize; if cfg!(target_endian = "big") { assert_eq!(usize::from_be(n), n) } else { assert_eq!(usize::from_be(n), n.swap_bytes()) }Run
pub const fn from_le(x: usize) -> usize
1.0.0 (const: 1.32.0)[src][−]
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Examples
Basic usage:
let n = 0x1Ausize; if cfg!(target_endian = "little") { assert_eq!(usize::from_le(n), n) } else { assert_eq!(usize::from_le(n), n.swap_bytes()) }Run
pub const fn to_be(self) -> usize
1.0.0 (const: 1.32.0)[src][−]
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
Examples
Basic usage:
let n = 0x1Ausize; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) }Run
pub const fn to_le(self) -> usize
1.0.0 (const: 1.32.0)[src][−]
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Examples
Basic usage:
let n = 0x1Ausize; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) }Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn checked_add(self, rhs: usize) -> Option<usize>
1.0.0 (const: 1.47.0)[src][−]Checked integer addition. Computes self + rhs
, returning None
if overflow occurred.
Examples
Basic usage:
assert_eq!((usize::MAX - 2).checked_add(1), Some(usize::MAX - 1)); assert_eq!((usize::MAX - 2).checked_add(3), None);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub unsafe fn unchecked_add(self, rhs: usize) -> usize
[src][−]unchecked_math
)Unchecked integer addition. Computes self + rhs
, assuming overflow
cannot occur. This results in undefined behavior when
self + rhs > usize::MAX
or self + rhs < usize::MIN
.
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn checked_sub(self, rhs: usize) -> Option<usize>
1.0.0 (const: 1.47.0)[src][−]Checked integer subtraction. Computes self - rhs
, returning
None
if overflow occurred.
Examples
Basic usage:
assert_eq!(1usize.checked_sub(1), Some(0)); assert_eq!(0usize.checked_sub(1), None);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub unsafe fn unchecked_sub(self, rhs: usize) -> usize
[src][−]unchecked_math
)Unchecked integer subtraction. Computes self - rhs
, assuming overflow
cannot occur. This results in undefined behavior when
self - rhs > usize::MAX
or self - rhs < usize::MIN
.
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn checked_mul(self, rhs: usize) -> Option<usize>
1.0.0 (const: 1.47.0)[src][−]Checked integer multiplication. Computes self * rhs
, returning
None
if overflow occurred.
Examples
Basic usage:
assert_eq!(5usize.checked_mul(1), Some(5)); assert_eq!(usize::MAX.checked_mul(2), None);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub unsafe fn unchecked_mul(self, rhs: usize) -> usize
[src][−]unchecked_math
)Unchecked integer multiplication. Computes self * rhs
, assuming overflow
cannot occur. This results in undefined behavior when
self * rhs > usize::MAX
or self * rhs < usize::MIN
.
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn checked_div(self, rhs: usize) -> Option<usize>
1.0.0 (const: 1.52.0)[src][−]Checked integer division. Computes self / rhs
, returning None
if rhs == 0
.
Examples
Basic usage:
assert_eq!(128usize.checked_div(2), Some(64)); assert_eq!(1usize.checked_div(0), None);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn checked_div_euclid(self, rhs: usize) -> Option<usize>
1.38.0 (const: 1.52.0)[src][−]Checked Euclidean division. Computes self.div_euclid(rhs)
, returning None
if rhs == 0
.
Examples
Basic usage:
assert_eq!(128usize.checked_div_euclid(2), Some(64)); assert_eq!(1usize.checked_div_euclid(0), None);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn checked_rem(self, rhs: usize) -> Option<usize>
1.7.0 (const: 1.52.0)[src][−]Checked integer remainder. Computes self % rhs
, returning None
if rhs == 0
.
Examples
Basic usage:
assert_eq!(5usize.checked_rem(2), Some(1)); assert_eq!(5usize.checked_rem(0), None);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn checked_rem_euclid(self, rhs: usize) -> Option<usize>
1.38.0 (const: 1.52.0)[src][−]Checked Euclidean modulo. Computes self.rem_euclid(rhs)
, returning None
if rhs == 0
.
Examples
Basic usage:
assert_eq!(5usize.checked_rem_euclid(2), Some(1)); assert_eq!(5usize.checked_rem_euclid(0), None);Run
pub const fn checked_neg(self) -> Option<usize>
1.7.0 (const: 1.47.0)[src][−]
Checked negation. Computes -self
, returning None
unless self == 0
.
Note that negating any positive integer will overflow.
Examples
Basic usage:
assert_eq!(0usize.checked_neg(), Some(0)); assert_eq!(1usize.checked_neg(), None);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn checked_shl(self, rhs: u32) -> Option<usize>
1.7.0 (const: 1.47.0)[src][−]Checked shift left. Computes self << rhs
, returning None
if rhs
is larger than or equal to the number of bits in self
.
Examples
Basic usage:
assert_eq!(0x1usize.checked_shl(4), Some(0x10)); assert_eq!(0x10usize.checked_shl(129), None);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn checked_shr(self, rhs: u32) -> Option<usize>
1.7.0 (const: 1.47.0)[src][−]Checked shift right. Computes self >> rhs
, returning None
if rhs
is larger than or equal to the number of bits in self
.
Examples
Basic usage:
assert_eq!(0x10usize.checked_shr(4), Some(0x1)); assert_eq!(0x10usize.checked_shr(129), None);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn checked_pow(self, exp: u32) -> Option<usize>
1.34.0 (const: 1.50.0)[src][−]Checked exponentiation. Computes self.pow(exp)
, returning None
if
overflow occurred.
Examples
Basic usage:
assert_eq!(2usize.checked_pow(5), Some(32)); assert_eq!(usize::MAX.checked_pow(2), None);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn saturating_add(self, rhs: usize) -> usize
1.0.0 (const: 1.47.0)[src][−]Saturating integer addition. Computes self + rhs
, saturating at
the numeric bounds instead of overflowing.
Examples
Basic usage:
assert_eq!(100usize.saturating_add(1), 101); assert_eq!(usize::MAX.saturating_add(127), usize::MAX);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn saturating_sub(self, rhs: usize) -> usize
1.0.0 (const: 1.47.0)[src][−]Saturating integer subtraction. Computes self - rhs
, saturating
at the numeric bounds instead of overflowing.
Examples
Basic usage:
assert_eq!(100usize.saturating_sub(27), 73); assert_eq!(13usize.saturating_sub(127), 0);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn saturating_mul(self, rhs: usize) -> usize
1.7.0 (const: 1.47.0)[src][−]Saturating integer multiplication. Computes self * rhs
,
saturating at the numeric bounds instead of overflowing.
Examples
Basic usage:
assert_eq!(2usize.saturating_mul(10), 20); assert_eq!((usize::MAX).saturating_mul(10), usize::MAX);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn saturating_pow(self, exp: u32) -> usize
1.34.0 (const: 1.50.0)[src][−]Saturating integer exponentiation. Computes self.pow(exp)
,
saturating at the numeric bounds instead of overflowing.
Examples
Basic usage:
assert_eq!(4usize.saturating_pow(3), 64); assert_eq!(usize::MAX.saturating_pow(2), usize::MAX);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn wrapping_add(self, rhs: usize) -> usize
1.0.0 (const: 1.32.0)[src][−]Wrapping (modular) addition. Computes self + rhs
,
wrapping around at the boundary of the type.
Examples
Basic usage:
assert_eq!(200usize.wrapping_add(55), 255); assert_eq!(200usize.wrapping_add(usize::MAX), 199);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn wrapping_sub(self, rhs: usize) -> usize
1.0.0 (const: 1.32.0)[src][−]Wrapping (modular) subtraction. Computes self - rhs
,
wrapping around at the boundary of the type.
Examples
Basic usage:
assert_eq!(100usize.wrapping_sub(100), 0); assert_eq!(100usize.wrapping_sub(usize::MAX), 101);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn wrapping_mul(self, rhs: usize) -> usize
1.0.0 (const: 1.32.0)[src][−]Wrapping (modular) multiplication. Computes self * rhs
, wrapping around at the boundary of the type.
Examples
Basic usage:
Please note that this example is shared between integer types.
Which explains why u8
is used here.
assert_eq!(10u8.wrapping_mul(12), 120); assert_eq!(25u8.wrapping_mul(12), 44);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn wrapping_div(self, rhs: usize) -> usize
1.2.0 (const: 1.52.0)[src][−]Wrapping (modular) division. Computes self / rhs
.
Wrapped division on unsigned types is just normal division.
There’s no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Examples
Basic usage:
assert_eq!(100usize.wrapping_div(10), 10);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn wrapping_div_euclid(self, rhs: usize) -> usize
1.38.0 (const: 1.52.0)[src][−]Wrapping Euclidean division. Computes self.div_euclid(rhs)
.
Wrapped division on unsigned types is just normal division.
There’s no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self.wrapping_div(rhs)
.
Examples
Basic usage:
assert_eq!(100usize.wrapping_div_euclid(10), 10);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn wrapping_rem(self, rhs: usize) -> usize
1.2.0 (const: 1.52.0)[src][−]Wrapping (modular) remainder. Computes self % rhs
.
Wrapped remainder calculation on unsigned types is
just the regular remainder calculation.
There’s no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Examples
Basic usage:
assert_eq!(100usize.wrapping_rem(10), 0);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn wrapping_rem_euclid(self, rhs: usize) -> usize
1.38.0 (const: 1.52.0)[src][−]Wrapping Euclidean modulo. Computes self.rem_euclid(rhs)
.
Wrapped modulo calculation on unsigned types is
just the regular remainder calculation.
There’s no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self.wrapping_rem(rhs)
.
Examples
Basic usage:
assert_eq!(100usize.wrapping_rem_euclid(10), 0);Run
pub const fn wrapping_neg(self) -> usize
1.2.0 (const: 1.32.0)[src][−]
Wrapping (modular) negation. Computes -self
,
wrapping around at the boundary of the type.
Since unsigned types do not have negative equivalents
all applications of this function will wrap (except for -0
).
For values smaller than the corresponding signed type’s maximum
the result is the same as casting the corresponding signed value.
Any larger values are equivalent to MAX + 1 - (val - MAX - 1)
where
MAX
is the corresponding signed type’s maximum.
Examples
Basic usage:
Please note that this example is shared between integer types.
Which explains why i8
is used here.
assert_eq!(100i8.wrapping_neg(), -100); assert_eq!((-128i8).wrapping_neg(), -128);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn wrapping_shl(self, rhs: u32) -> usize
1.2.0 (const: 1.32.0)[src][−]Panic-free bitwise shift-left; yields self << mask(rhs)
,
where mask
removes any high-order bits of rhs
that
would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-left; the
RHS of a wrapping shift-left is restricted to the range
of the type, rather than the bits shifted out of the LHS
being returned to the other end. The primitive integer
types all implement a rotate_left
function,
which may be what you want instead.
Examples
Basic usage:
assert_eq!(1usize.wrapping_shl(7), 128); assert_eq!(1usize.wrapping_shl(128), 1);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn wrapping_shr(self, rhs: u32) -> usize
1.2.0 (const: 1.32.0)[src][−]Panic-free bitwise shift-right; yields self >> mask(rhs)
,
where mask
removes any high-order bits of rhs
that
would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-right; the
RHS of a wrapping shift-right is restricted to the range
of the type, rather than the bits shifted out of the LHS
being returned to the other end. The primitive integer
types all implement a rotate_right
function,
which may be what you want instead.
Examples
Basic usage:
assert_eq!(128usize.wrapping_shr(7), 1); assert_eq!(128usize.wrapping_shr(128), 128);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn wrapping_pow(self, exp: u32) -> usize
1.34.0 (const: 1.50.0)[src][−]Wrapping (modular) exponentiation. Computes self.pow(exp)
,
wrapping around at the boundary of the type.
Examples
Basic usage:
assert_eq!(3usize.wrapping_pow(5), 243); assert_eq!(3u8.wrapping_pow(6), 217);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn overflowing_add(self, rhs: usize) -> (usize, bool)
1.7.0 (const: 1.32.0)[src][−]Calculates self
+ rhs
Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage
assert_eq!(5usize.overflowing_add(2), (7, false)); assert_eq!(usize::MAX.overflowing_add(1), (0, true));Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn overflowing_sub(self, rhs: usize) -> (usize, bool)
1.7.0 (const: 1.32.0)[src][−]Calculates self
- rhs
Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage
assert_eq!(5usize.overflowing_sub(2), (3, false)); assert_eq!(0usize.overflowing_sub(1), (usize::MAX, true));Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn overflowing_mul(self, rhs: usize) -> (usize, bool)
1.7.0 (const: 1.32.0)[src][−]Calculates the multiplication of self
and rhs
.
Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage:
Please note that this example is shared between integer types.
Which explains why u32
is used here.
assert_eq!(5u32.overflowing_mul(2), (10, false)); assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn overflowing_div(self, rhs: usize) -> (usize, bool)
1.7.0 (const: 1.52.0)[src][−]Calculates the divisor when self
is divided by rhs
.
Returns a tuple of the divisor along with a boolean indicating
whether an arithmetic overflow would occur. Note that for unsigned
integers overflow never occurs, so the second value is always
false
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
assert_eq!(5usize.overflowing_div(2), (2, false));Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn overflowing_div_euclid(self, rhs: usize) -> (usize, bool)
1.38.0 (const: 1.52.0)[src][−]Calculates the quotient of Euclidean division self.div_euclid(rhs)
.
Returns a tuple of the divisor along with a boolean indicating
whether an arithmetic overflow would occur. Note that for unsigned
integers overflow never occurs, so the second value is always
false
.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self.overflowing_div(rhs)
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
assert_eq!(5usize.overflowing_div_euclid(2), (2, false));Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn overflowing_rem(self, rhs: usize) -> (usize, bool)
1.7.0 (const: 1.52.0)[src][−]Calculates the remainder when self
is divided by rhs
.
Returns a tuple of the remainder after dividing along with a boolean
indicating whether an arithmetic overflow would occur. Note that for
unsigned integers overflow never occurs, so the second value is
always false
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
assert_eq!(5usize.overflowing_rem(2), (1, false));Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn overflowing_rem_euclid(self, rhs: usize) -> (usize, bool)
1.38.0 (const: 1.52.0)[src][−]Calculates the remainder self.rem_euclid(rhs)
as if by Euclidean division.
Returns a tuple of the modulo after dividing along with a boolean
indicating whether an arithmetic overflow would occur. Note that for
unsigned integers overflow never occurs, so the second value is
always false
.
Since, for the positive integers, all common
definitions of division are equal, this operation
is exactly equal to self.overflowing_rem(rhs)
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
assert_eq!(5usize.overflowing_rem_euclid(2), (1, false));Run
pub const fn overflowing_neg(self) -> (usize, bool)
1.7.0 (const: 1.32.0)[src][−]
Negates self in an overflowing fashion.
Returns !self + 1
using wrapping operations to return the value
that represents the negation of this unsigned value. Note that for
positive unsigned values overflow always occurs, but negating 0 does
not overflow.
Examples
Basic usage
assert_eq!(0usize.overflowing_neg(), (0, false)); assert_eq!(2usize.overflowing_neg(), (-2i32 as usize, true));Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn overflowing_shl(self, rhs: u32) -> (usize, bool)
1.7.0 (const: 1.32.0)[src][−]Shifts self left by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Examples
Basic usage
assert_eq!(0x1usize.overflowing_shl(4), (0x10, false)); assert_eq!(0x1usize.overflowing_shl(132), (0x10, true));Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn overflowing_shr(self, rhs: u32) -> (usize, bool)
1.7.0 (const: 1.32.0)[src][−]Shifts self right by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Examples
Basic usage
assert_eq!(0x10usize.overflowing_shr(4), (0x1, false)); assert_eq!(0x10usize.overflowing_shr(132), (0x1, true));Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn overflowing_pow(self, exp: u32) -> (usize, bool)
1.34.0 (const: 1.50.0)[src][−]Raises self to the power of exp
, using exponentiation by squaring.
Returns a tuple of the exponentiation along with a bool indicating whether an overflow happened.
Examples
Basic usage:
assert_eq!(3usize.overflowing_pow(5), (243, false)); assert_eq!(3u8.overflowing_pow(6), (217, true));Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn pow(self, exp: u32) -> usize
1.0.0 (const: 1.50.0)[src][−]Raises self to the power of exp
, using exponentiation by squaring.
Examples
Basic usage:
assert_eq!(2usize.pow(5), 32);Run
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn div_euclid(self, rhs: usize) -> usize
1.38.0 (const: 1.52.0)[src][−]Performs Euclidean division.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self / rhs
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage:
assert_eq!(7usize.div_euclid(4), 1); // or any other integer typeRun
#[must_use = "this returns the result of the operation, \ without modifying the original"]
pub const fn rem_euclid(self, rhs: usize) -> usize
1.38.0 (const: 1.52.0)[src][−]Calculates the least remainder of self (mod rhs)
.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self % rhs
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage:
assert_eq!(7usize.rem_euclid(4), 3); // or any other integer typeRun
pub const fn is_power_of_two(self) -> bool
1.0.0 (const: 1.32.0)[src][−]
Returns true
if and only if self == 2^k
for some k
.
Examples
Basic usage:
assert!(16usize.is_power_of_two()); assert!(!10usize.is_power_of_two());Run
pub const fn next_power_of_two(self) -> usize
1.0.0 (const: 1.50.0)[src][−]
Returns the smallest power of two greater than or equal to self
.
When return value overflows (i.e., self > (1 << (N-1))
for type
uN
), it panics in debug mode and return value is wrapped to 0 in
release mode (the only situation in which method can return 0).
Examples
Basic usage:
assert_eq!(2usize.next_power_of_two(), 2); assert_eq!(3usize.next_power_of_two(), 4);Run
pub const fn checked_next_power_of_two(self) -> Option<usize>
1.0.0 (const: 1.50.0)[src][−]
Returns the smallest power of two greater than or equal to n
. If
the next power of two is greater than the type’s maximum value,
None
is returned, otherwise the power of two is wrapped in Some
.
Examples
Basic usage:
assert_eq!(2usize.checked_next_power_of_two(), Some(2)); assert_eq!(3usize.checked_next_power_of_two(), Some(4)); assert_eq!(usize::MAX.checked_next_power_of_two(), None);Run
pub const fn wrapping_next_power_of_two(self) -> usize
[src][−]
wrapping_next_power_of_two
#32463)Returns the smallest power of two greater than or equal to n
. If
the next power of two is greater than the type’s maximum value,
the return value is wrapped to 0
.
Examples
Basic usage:
#![feature(wrapping_next_power_of_two)] assert_eq!(2usize.wrapping_next_power_of_two(), 2); assert_eq!(3usize.wrapping_next_power_of_two(), 4); assert_eq!(usize::MAX.wrapping_next_power_of_two(), 0);Run
pub const fn to_be_bytes(self) -> [u8; 8]
1.32.0 (const: 1.44.0)[src][−]
Return the memory representation of this integer as a byte array in big-endian (network) byte order.
Note: This function returns an array of length 2, 4 or 8 bytes depending on the target pointer size.
Examples
let bytes = 0x1234567890123456usize.to_be_bytes(); assert_eq!(bytes, [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]);Run
pub const fn to_le_bytes(self) -> [u8; 8]
1.32.0 (const: 1.44.0)[src][−]
Return the memory representation of this integer as a byte array in little-endian byte order.
Note: This function returns an array of length 2, 4 or 8 bytes depending on the target pointer size.
Examples
let bytes = 0x1234567890123456usize.to_le_bytes(); assert_eq!(bytes, [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]);Run
pub const fn to_ne_bytes(self) -> [u8; 8]
1.32.0 (const: 1.44.0)[src][−]
Return the memory representation of this integer as a byte array in native byte order.
As the target platform’s native endianness is used, portable code
should use to_be_bytes
or to_le_bytes
, as appropriate,
instead.
Note: This function returns an array of length 2, 4 or 8 bytes depending on the target pointer size.
Examples
let bytes = 0x1234567890123456usize.to_ne_bytes(); assert_eq!( bytes, if cfg!(target_endian = "big") { [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56] } else { [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12] } );Run
pub fn as_ne_bytes(&self) -> &[u8; 8]
[src][−]
num_as_ne_bytes
#76976)Return the memory representation of this integer as a byte array in native byte order.
to_ne_bytes
should be preferred over this whenever possible.
Examples
#![feature(num_as_ne_bytes)] let num = 0x1234567890123456usize; let bytes = num.as_ne_bytes(); assert_eq!( bytes, if cfg!(target_endian = "big") { &[0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56] } else { &[0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12] } );Run
pub const fn from_be_bytes(bytes: [u8; 8]) -> usize
1.32.0 (const: 1.44.0)[src][−]
Create a native endian integer value from its representation as a byte array in big endian.
Note: This function takes an array of length 2, 4 or 8 bytes depending on the target pointer size.
Examples
let value = usize::from_be_bytes([0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]); assert_eq!(value, 0x1234567890123456);Run
When starting from a slice rather than an array, fallible conversion APIs can be used:
use std::convert::TryInto; fn read_be_usize(input: &mut &[u8]) -> usize { let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>()); *input = rest; usize::from_be_bytes(int_bytes.try_into().unwrap()) }Run
pub const fn from_le_bytes(bytes: [u8; 8]) -> usize
1.32.0 (const: 1.44.0)[src][−]
Create a native endian integer value from its representation as a byte array in little endian.
Note: This function takes an array of length 2, 4 or 8 bytes depending on the target pointer size.
Examples
let value = usize::from_le_bytes([0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]); assert_eq!(value, 0x1234567890123456);Run
When starting from a slice rather than an array, fallible conversion APIs can be used:
use std::convert::TryInto; fn read_le_usize(input: &mut &[u8]) -> usize { let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>()); *input = rest; usize::from_le_bytes(int_bytes.try_into().unwrap()) }Run
pub const fn from_ne_bytes(bytes: [u8; 8]) -> usize
1.32.0 (const: 1.44.0)[src][−]
Create a native endian integer value from its memory representation as a byte array in native endianness.
As the target platform’s native endianness is used, portable code
likely wants to use from_be_bytes
or from_le_bytes
, as
appropriate instead.
Note: This function takes an array of length 2, 4 or 8 bytes depending on the target pointer size.
Examples
let value = usize::from_ne_bytes(if cfg!(target_endian = "big") { [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56] } else { [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12] }); assert_eq!(value, 0x1234567890123456);Run
When starting from a slice rather than an array, fallible conversion APIs can be used:
use std::convert::TryInto; fn read_ne_usize(input: &mut &[u8]) -> usize { let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>()); *input = rest; usize::from_ne_bytes(int_bytes.try_into().unwrap()) }Run
pub const fn min_value() -> usize
1.0.0 (const: 1.32.0)[src][−]
replaced by the MIN
associated constant on this type
New code should prefer to use
usize::MIN
instead.
Returns the smallest value that can be represented by this integer type.
pub const fn max_value() -> usize
1.0.0 (const: 1.32.0)[src][−]
replaced by the MAX
associated constant on this type
New code should prefer to use
usize::MAX
instead.
Returns the largest value that can be represented by this integer type.
Recommend
About Joyk
Aggregate valuable and interesting links.
Joyk means Joy of geeK