2

u8 - Rust

 3 years ago
source link: https://doc.rust-lang.org/stable/std/primitive.u8.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

impl u8[src][−]

pub const MIN: u81.43.0[src][−][−]

The smallest value that can be represented by this integer type.

Examples

Basic usage:

assert_eq!(u8::MIN, 0);
Run

pub const MAX: u81.43.0[src][−][−]

The largest value that can be represented by this integer type.

Examples

Basic usage:

assert_eq!(u8::MAX, 255);
Run

pub const BITS: u32[src][−][−]

🔬 This is a nightly-only experimental API. (int_bits_const #76904)

The size of this integer type in bits.

Examples

#![feature(int_bits_const)]
assert_eq!(u8::BITS, 8);
Run

pub fn from_str_radix(src: &str, radix: u32) -> Result<u8, ParseIntError>[src][−]

Converts a string slice in a given base to an integer.

The string is expected to be an optional + sign followed by digits. Leading and trailing whitespace represent an error. Digits are a subset of these characters, depending on radix:

  • 0-9
  • a-z
  • A-Z

Panics

This function panics if radix is not in the range from 2 to 36.

Examples

Basic usage:

assert_eq!(u8::from_str_radix("A", 16), Ok(10));
Run

pub const fn count_ones(self) -> u321.0.0 (const: 1.32.0)[src][−]

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

let n = 0b01001100u8;

assert_eq!(n.count_ones(), 3);
Run

pub const fn count_zeros(self) -> u321.0.0 (const: 1.32.0)[src][−]

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

assert_eq!(u8::MAX.count_zeros(), 0);
Run

pub const fn leading_zeros(self) -> u321.0.0 (const: 1.32.0)[src][−]

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

let n = u8::MAX >> 2;

assert_eq!(n.leading_zeros(), 2);
Run

pub const fn trailing_zeros(self) -> u321.0.0 (const: 1.32.0)[src][−]

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

let n = 0b0101000u8;

assert_eq!(n.trailing_zeros(), 3);
Run

pub const fn leading_ones(self) -> u321.46.0 (const: 1.46.0)[src][−]

Returns the number of leading ones in the binary representation of self.

Examples

Basic usage:

let n = !(u8::MAX >> 2);

assert_eq!(n.leading_ones(), 2);
Run

pub const fn trailing_ones(self) -> u321.46.0 (const: 1.46.0)[src][−]

Returns the number of trailing ones in the binary representation of self.

Examples

Basic usage:

let n = 0b1010111u8;

assert_eq!(n.trailing_ones(), 3);
Run
pub const fn rotate_left(self, n: u32) -> u81.0.0 (const: 1.32.0)[src][−]

Shifts the bits to the left by a specified amount, n, wrapping the truncated bits to the end of the resulting integer.

Please note this isn’t the same operation as the << shifting operator!

Examples

Basic usage:

let n = 0x82u8;
let m = 0xa;

assert_eq!(n.rotate_left(2), m);
Run
pub const fn rotate_right(self, n: u32) -> u81.0.0 (const: 1.32.0)[src][−]

Shifts the bits to the right by a specified amount, n, wrapping the truncated bits to the beginning of the resulting integer.

Please note this isn’t the same operation as the >> shifting operator!

Examples

Basic usage:

let n = 0xau8;
let m = 0x82;

assert_eq!(n.rotate_right(2), m);
Run

pub const fn swap_bytes(self) -> u81.0.0 (const: 1.32.0)[src][−]

Reverses the byte order of the integer.

Examples

Basic usage:

let n = 0x12u8;
let m = n.swap_bytes();

assert_eq!(m, 0x12);
Run
pub const fn reverse_bits(self) -> u81.37.0 (const: 1.32.0)[src][−]

Reverses the order of bits in the integer. The least significant bit becomes the most significant bit, second least-significant bit becomes second most-significant bit, etc.

Examples

Basic usage:

let n = 0x12u8;
let m = n.reverse_bits();

assert_eq!(m, 0x48);
assert_eq!(0, 0u8.reverse_bits());
Run

pub const fn from_be(x: u8) -> u81.0.0 (const: 1.32.0)[src][−]

Converts an integer from big endian to the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

let n = 0x1Au8;

if cfg!(target_endian = "big") {
    assert_eq!(u8::from_be(n), n)
} else {
    assert_eq!(u8::from_be(n), n.swap_bytes())
}
Run

pub const fn from_le(x: u8) -> u81.0.0 (const: 1.32.0)[src][−]

Converts an integer from little endian to the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

let n = 0x1Au8;

if cfg!(target_endian = "little") {
    assert_eq!(u8::from_le(n), n)
} else {
    assert_eq!(u8::from_le(n), n.swap_bytes())
}
Run

pub const fn to_be(self) -> u81.0.0 (const: 1.32.0)[src][−]

Converts self to big endian from the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

let n = 0x1Au8;

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}
Run

pub const fn to_le(self) -> u81.0.0 (const: 1.32.0)[src][−]

Converts self to little endian from the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

let n = 0x1Au8;

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}
Run
pub const fn checked_add(self, rhs: u8) -> Option<u8>1.0.0 (const: 1.47.0)[src][−]

Checked integer addition. Computes self + rhs, returning None if overflow occurred.

Examples

Basic usage:

assert_eq!((u8::MAX - 2).checked_add(1), Some(u8::MAX - 1));
assert_eq!((u8::MAX - 2).checked_add(3), None);
Run
pub unsafe fn unchecked_add(self, rhs: u8) -> u8[src][−]
🔬 This is a nightly-only experimental API. (unchecked_math)

Unchecked integer addition. Computes self + rhs, assuming overflow cannot occur. This results in undefined behavior when self + rhs > u8::MAX or self + rhs < u8::MIN.

pub const fn checked_sub(self, rhs: u8) -> Option<u8>1.0.0 (const: 1.47.0)[src][−]

Checked integer subtraction. Computes self - rhs, returning None if overflow occurred.

Examples

Basic usage:

assert_eq!(1u8.checked_sub(1), Some(0));
assert_eq!(0u8.checked_sub(1), None);
Run
pub unsafe fn unchecked_sub(self, rhs: u8) -> u8[src][−]
🔬 This is a nightly-only experimental API. (unchecked_math)

Unchecked integer subtraction. Computes self - rhs, assuming overflow cannot occur. This results in undefined behavior when self - rhs > u8::MAX or self - rhs < u8::MIN.

pub const fn checked_mul(self, rhs: u8) -> Option<u8>1.0.0 (const: 1.47.0)[src][−]

Checked integer multiplication. Computes self * rhs, returning None if overflow occurred.

Examples

Basic usage:

assert_eq!(5u8.checked_mul(1), Some(5));
assert_eq!(u8::MAX.checked_mul(2), None);
Run
pub unsafe fn unchecked_mul(self, rhs: u8) -> u8[src][−]
🔬 This is a nightly-only experimental API. (unchecked_math)

Unchecked integer multiplication. Computes self * rhs, assuming overflow cannot occur. This results in undefined behavior when self * rhs > u8::MAX or self * rhs < u8::MIN.

pub const fn checked_div(self, rhs: u8) -> Option<u8>1.0.0 (const: 1.52.0)[src][−]

Checked integer division. Computes self / rhs, returning None if rhs == 0.

Examples

Basic usage:

assert_eq!(128u8.checked_div(2), Some(64));
assert_eq!(1u8.checked_div(0), None);
Run
pub const fn checked_div_euclid(self, rhs: u8) -> Option<u8>1.38.0 (const: 1.52.0)[src][−]

Checked Euclidean division. Computes self.div_euclid(rhs), returning None if rhs == 0.

Examples

Basic usage:

assert_eq!(128u8.checked_div_euclid(2), Some(64));
assert_eq!(1u8.checked_div_euclid(0), None);
Run
pub const fn checked_rem(self, rhs: u8) -> Option<u8>1.7.0 (const: 1.52.0)[src][−]

Checked integer remainder. Computes self % rhs, returning None if rhs == 0.

Examples

Basic usage:

assert_eq!(5u8.checked_rem(2), Some(1));
assert_eq!(5u8.checked_rem(0), None);
Run
pub const fn checked_rem_euclid(self, rhs: u8) -> Option<u8>1.38.0 (const: 1.52.0)[src][−]

Checked Euclidean modulo. Computes self.rem_euclid(rhs), returning None if rhs == 0.

Examples

Basic usage:

assert_eq!(5u8.checked_rem_euclid(2), Some(1));
assert_eq!(5u8.checked_rem_euclid(0), None);
Run

pub const fn checked_neg(self) -> Option<u8>1.7.0 (const: 1.47.0)[src][−]

Checked negation. Computes -self, returning None unless self == 0.

Note that negating any positive integer will overflow.

Examples

Basic usage:

assert_eq!(0u8.checked_neg(), Some(0));
assert_eq!(1u8.checked_neg(), None);
Run
pub const fn checked_shl(self, rhs: u32) -> Option<u8>1.7.0 (const: 1.47.0)[src][−]

Checked shift left. Computes self << rhs, returning None if rhs is larger than or equal to the number of bits in self.

Examples

Basic usage:

assert_eq!(0x1u8.checked_shl(4), Some(0x10));
assert_eq!(0x10u8.checked_shl(129), None);
Run
pub const fn checked_shr(self, rhs: u32) -> Option<u8>1.7.0 (const: 1.47.0)[src][−]

Checked shift right. Computes self >> rhs, returning None if rhs is larger than or equal to the number of bits in self.

Examples

Basic usage:

assert_eq!(0x10u8.checked_shr(4), Some(0x1));
assert_eq!(0x10u8.checked_shr(129), None);
Run
pub const fn checked_pow(self, exp: u32) -> Option<u8>1.34.0 (const: 1.50.0)[src][−]

Checked exponentiation. Computes self.pow(exp), returning None if overflow occurred.

Examples

Basic usage:

assert_eq!(2u8.checked_pow(5), Some(32));
assert_eq!(u8::MAX.checked_pow(2), None);
Run
pub const fn saturating_add(self, rhs: u8) -> u81.0.0 (const: 1.47.0)[src][−]

Saturating integer addition. Computes self + rhs, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

assert_eq!(100u8.saturating_add(1), 101);
assert_eq!(u8::MAX.saturating_add(127), u8::MAX);
Run
pub const fn saturating_sub(self, rhs: u8) -> u81.0.0 (const: 1.47.0)[src][−]

Saturating integer subtraction. Computes self - rhs, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

assert_eq!(100u8.saturating_sub(27), 73);
assert_eq!(13u8.saturating_sub(127), 0);
Run
pub const fn saturating_mul(self, rhs: u8) -> u81.7.0 (const: 1.47.0)[src][−]

Saturating integer multiplication. Computes self * rhs, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

assert_eq!(2u8.saturating_mul(10), 20);
assert_eq!((u8::MAX).saturating_mul(10), u8::MAX);
Run
pub const fn saturating_pow(self, exp: u32) -> u81.34.0 (const: 1.50.0)[src][−]

Saturating integer exponentiation. Computes self.pow(exp), saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

assert_eq!(4u8.saturating_pow(3), 64);
assert_eq!(u8::MAX.saturating_pow(2), u8::MAX);
Run
pub const fn wrapping_add(self, rhs: u8) -> u81.0.0 (const: 1.32.0)[src][−]

Wrapping (modular) addition. Computes self + rhs, wrapping around at the boundary of the type.

Examples

Basic usage:

assert_eq!(200u8.wrapping_add(55), 255);
assert_eq!(200u8.wrapping_add(u8::MAX), 199);
Run
pub const fn wrapping_sub(self, rhs: u8) -> u81.0.0 (const: 1.32.0)[src][−]

Wrapping (modular) subtraction. Computes self - rhs, wrapping around at the boundary of the type.

Examples

Basic usage:

assert_eq!(100u8.wrapping_sub(100), 0);
assert_eq!(100u8.wrapping_sub(u8::MAX), 101);
Run
pub const fn wrapping_mul(self, rhs: u8) -> u81.0.0 (const: 1.32.0)[src][−]

Wrapping (modular) multiplication. Computes self * rhs, wrapping around at the boundary of the type.

Examples

Basic usage:

Please note that this example is shared between integer types. Which explains why u8 is used here.

assert_eq!(10u8.wrapping_mul(12), 120);
assert_eq!(25u8.wrapping_mul(12), 44);
Run
pub const fn wrapping_div(self, rhs: u8) -> u81.2.0 (const: 1.52.0)[src][−]

Wrapping (modular) division. Computes self / rhs. Wrapped division on unsigned types is just normal division. There’s no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations.

Examples

Basic usage:

assert_eq!(100u8.wrapping_div(10), 10);
Run
pub const fn wrapping_div_euclid(self, rhs: u8) -> u81.38.0 (const: 1.52.0)[src][−]

Wrapping Euclidean division. Computes self.div_euclid(rhs). Wrapped division on unsigned types is just normal division. There’s no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations. Since, for the positive integers, all common definitions of division are equal, this is exactly equal to self.wrapping_div(rhs).

Examples

Basic usage:

assert_eq!(100u8.wrapping_div_euclid(10), 10);
Run
pub const fn wrapping_rem(self, rhs: u8) -> u81.2.0 (const: 1.52.0)[src][−]

Wrapping (modular) remainder. Computes self % rhs. Wrapped remainder calculation on unsigned types is just the regular remainder calculation. There’s no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations.

Examples

Basic usage:

assert_eq!(100u8.wrapping_rem(10), 0);
Run
pub const fn wrapping_rem_euclid(self, rhs: u8) -> u81.38.0 (const: 1.52.0)[src][−]

Wrapping Euclidean modulo. Computes self.rem_euclid(rhs). Wrapped modulo calculation on unsigned types is just the regular remainder calculation. There’s no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations. Since, for the positive integers, all common definitions of division are equal, this is exactly equal to self.wrapping_rem(rhs).

Examples

Basic usage:

assert_eq!(100u8.wrapping_rem_euclid(10), 0);
Run

pub const fn wrapping_neg(self) -> u81.2.0 (const: 1.32.0)[src][−]

Wrapping (modular) negation. Computes -self, wrapping around at the boundary of the type.

Since unsigned types do not have negative equivalents all applications of this function will wrap (except for -0). For values smaller than the corresponding signed type’s maximum the result is the same as casting the corresponding signed value. Any larger values are equivalent to MAX + 1 - (val - MAX - 1) where MAX is the corresponding signed type’s maximum.

Examples

Basic usage:

Please note that this example is shared between integer types. Which explains why i8 is used here.

assert_eq!(100i8.wrapping_neg(), -100);
assert_eq!((-128i8).wrapping_neg(), -128);
Run
pub const fn wrapping_shl(self, rhs: u32) -> u81.2.0 (const: 1.32.0)[src][−]

Panic-free bitwise shift-left; yields self << mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

Note that this is not the same as a rotate-left; the RHS of a wrapping shift-left is restricted to the range of the type, rather than the bits shifted out of the LHS being returned to the other end. The primitive integer types all implement a rotate_left function, which may be what you want instead.

Examples

Basic usage:

assert_eq!(1u8.wrapping_shl(7), 128);
assert_eq!(1u8.wrapping_shl(128), 1);
Run
pub const fn wrapping_shr(self, rhs: u32) -> u81.2.0 (const: 1.32.0)[src][−]

Panic-free bitwise shift-right; yields self >> mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

Note that this is not the same as a rotate-right; the RHS of a wrapping shift-right is restricted to the range of the type, rather than the bits shifted out of the LHS being returned to the other end. The primitive integer types all implement a rotate_right function, which may be what you want instead.

Examples

Basic usage:

assert_eq!(128u8.wrapping_shr(7), 1);
assert_eq!(128u8.wrapping_shr(128), 128);
Run
pub const fn wrapping_pow(self, exp: u32) -> u81.34.0 (const: 1.50.0)[src][−]

Wrapping (modular) exponentiation. Computes self.pow(exp), wrapping around at the boundary of the type.

Examples

Basic usage:

assert_eq!(3u8.wrapping_pow(5), 243);
assert_eq!(3u8.wrapping_pow(6), 217);
Run
pub const fn overflowing_add(self, rhs: u8) -> (u8, bool)1.7.0 (const: 1.32.0)[src][−]

Calculates self + rhs

Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage

assert_eq!(5u8.overflowing_add(2), (7, false));
assert_eq!(u8::MAX.overflowing_add(1), (0, true));
Run
pub const fn overflowing_sub(self, rhs: u8) -> (u8, bool)1.7.0 (const: 1.32.0)[src][−]

Calculates self - rhs

Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage

assert_eq!(5u8.overflowing_sub(2), (3, false));
assert_eq!(0u8.overflowing_sub(1), (u8::MAX, true));
Run
pub const fn overflowing_mul(self, rhs: u8) -> (u8, bool)1.7.0 (const: 1.32.0)[src][−]

Calculates the multiplication of self and rhs.

Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage:

Please note that this example is shared between integer types. Which explains why u32 is used here.

assert_eq!(5u32.overflowing_mul(2), (10, false));
assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));
Run
pub const fn overflowing_div(self, rhs: u8) -> (u8, bool)1.7.0 (const: 1.52.0)[src][−]

Calculates the divisor when self is divided by rhs.

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always false.

Panics

This function will panic if rhs is 0.

Examples

Basic usage

assert_eq!(5u8.overflowing_div(2), (2, false));
Run
pub const fn overflowing_div_euclid(self, rhs: u8) -> (u8, bool)1.38.0 (const: 1.52.0)[src][−]

Calculates the quotient of Euclidean division self.div_euclid(rhs).

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always false. Since, for the positive integers, all common definitions of division are equal, this is exactly equal to self.overflowing_div(rhs).

Panics

This function will panic if rhs is 0.

Examples

Basic usage

assert_eq!(5u8.overflowing_div_euclid(2), (2, false));
Run
pub const fn overflowing_rem(self, rhs: u8) -> (u8, bool)1.7.0 (const: 1.52.0)[src][−]

Calculates the remainder when self is divided by rhs.

Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always false.

Panics

This function will panic if rhs is 0.

Examples

Basic usage

assert_eq!(5u8.overflowing_rem(2), (1, false));
Run
pub const fn overflowing_rem_euclid(self, rhs: u8) -> (u8, bool)1.38.0 (const: 1.52.0)[src][−]

Calculates the remainder self.rem_euclid(rhs) as if by Euclidean division.

Returns a tuple of the modulo after dividing along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always false. Since, for the positive integers, all common definitions of division are equal, this operation is exactly equal to self.overflowing_rem(rhs).

Panics

This function will panic if rhs is 0.

Examples

Basic usage

assert_eq!(5u8.overflowing_rem_euclid(2), (1, false));
Run

pub const fn overflowing_neg(self) -> (u8, bool)1.7.0 (const: 1.32.0)[src][−]

Negates self in an overflowing fashion.

Returns !self + 1 using wrapping operations to return the value that represents the negation of this unsigned value. Note that for positive unsigned values overflow always occurs, but negating 0 does not overflow.

Examples

Basic usage

assert_eq!(0u8.overflowing_neg(), (0, false));
assert_eq!(2u8.overflowing_neg(), (-2i32 as u8, true));
Run
pub const fn overflowing_shl(self, rhs: u32) -> (u8, bool)1.7.0 (const: 1.32.0)[src][−]

Shifts self left by rhs bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Examples

Basic usage

assert_eq!(0x1u8.overflowing_shl(4), (0x10, false));
assert_eq!(0x1u8.overflowing_shl(132), (0x10, true));
Run
pub const fn overflowing_shr(self, rhs: u32) -> (u8, bool)1.7.0 (const: 1.32.0)[src][−]

Shifts self right by rhs bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Examples

Basic usage

assert_eq!(0x10u8.overflowing_shr(4), (0x1, false));
assert_eq!(0x10u8.overflowing_shr(132), (0x1, true));
Run
pub const fn overflowing_pow(self, exp: u32) -> (u8, bool)1.34.0 (const: 1.50.0)[src][−]

Raises self to the power of exp, using exponentiation by squaring.

Returns a tuple of the exponentiation along with a bool indicating whether an overflow happened.

Examples

Basic usage:

assert_eq!(3u8.overflowing_pow(5), (243, false));
assert_eq!(3u8.overflowing_pow(6), (217, true));
Run
pub const fn pow(self, exp: u32) -> u81.0.0 (const: 1.50.0)[src][−]

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

assert_eq!(2u8.pow(5), 32);
Run
pub const fn div_euclid(self, rhs: u8) -> u81.38.0 (const: 1.52.0)[src][−]

Performs Euclidean division.

Since, for the positive integers, all common definitions of division are equal, this is exactly equal to self / rhs.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

assert_eq!(7u8.div_euclid(4), 1); // or any other integer type
Run
pub const fn rem_euclid(self, rhs: u8) -> u81.38.0 (const: 1.52.0)[src][−]

Calculates the least remainder of self (mod rhs).

Since, for the positive integers, all common definitions of division are equal, this is exactly equal to self % rhs.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

assert_eq!(7u8.rem_euclid(4), 3); // or any other integer type
Run

pub const fn is_power_of_two(self) -> bool1.0.0 (const: 1.32.0)[src][−]

Returns true if and only if self == 2^k for some k.

Examples

Basic usage:

assert!(16u8.is_power_of_two());
assert!(!10u8.is_power_of_two());
Run

pub const fn next_power_of_two(self) -> u81.0.0 (const: 1.50.0)[src][−]

Returns the smallest power of two greater than or equal to self.

When return value overflows (i.e., self > (1 << (N-1)) for type uN), it panics in debug mode and return value is wrapped to 0 in release mode (the only situation in which method can return 0).

Examples

Basic usage:

assert_eq!(2u8.next_power_of_two(), 2);
assert_eq!(3u8.next_power_of_two(), 4);
Run

pub const fn checked_next_power_of_two(self) -> Option<u8>1.0.0 (const: 1.50.0)[src][−]

Returns the smallest power of two greater than or equal to n. If the next power of two is greater than the type’s maximum value, None is returned, otherwise the power of two is wrapped in Some.

Examples

Basic usage:

assert_eq!(2u8.checked_next_power_of_two(), Some(2));
assert_eq!(3u8.checked_next_power_of_two(), Some(4));
assert_eq!(u8::MAX.checked_next_power_of_two(), None);
Run

pub const fn wrapping_next_power_of_two(self) -> u8[src][−]

🔬 This is a nightly-only experimental API. (wrapping_next_power_of_two #32463)

Returns the smallest power of two greater than or equal to n. If the next power of two is greater than the type’s maximum value, the return value is wrapped to 0.

Examples

Basic usage:

#![feature(wrapping_next_power_of_two)]

assert_eq!(2u8.wrapping_next_power_of_two(), 2);
assert_eq!(3u8.wrapping_next_power_of_two(), 4);
assert_eq!(u8::MAX.wrapping_next_power_of_two(), 0);
Run

pub const fn to_be_bytes(self) -> [u8; 1]1.32.0 (const: 1.44.0)[src][−]

Return the memory representation of this integer as a byte array in big-endian (network) byte order.

Examples

let bytes = 0x12u8.to_be_bytes();
assert_eq!(bytes, [0x12]);
Run

pub const fn to_le_bytes(self) -> [u8; 1]1.32.0 (const: 1.44.0)[src][−]

Return the memory representation of this integer as a byte array in little-endian byte order.

Examples

let bytes = 0x12u8.to_le_bytes();
assert_eq!(bytes, [0x12]);
Run

pub const fn to_ne_bytes(self) -> [u8; 1]1.32.0 (const: 1.44.0)[src][−]

Return the memory representation of this integer as a byte array in native byte order.

As the target platform’s native endianness is used, portable code should use to_be_bytes or to_le_bytes, as appropriate, instead.

Examples

let bytes = 0x12u8.to_ne_bytes();
assert_eq!(
    bytes,
    if cfg!(target_endian = "big") {
        [0x12]
    } else {
        [0x12]
    }
);
Run

pub fn as_ne_bytes(&self) -> &[u8; 1][src][−]

🔬 This is a nightly-only experimental API. (num_as_ne_bytes #76976)

Return the memory representation of this integer as a byte array in native byte order.

to_ne_bytes should be preferred over this whenever possible.

Examples

#![feature(num_as_ne_bytes)]
let num = 0x12u8;
let bytes = num.as_ne_bytes();
assert_eq!(
    bytes,
    if cfg!(target_endian = "big") {
        &[0x12]
    } else {
        &[0x12]
    }
);
Run

pub const fn from_be_bytes(bytes: [u8; 1]) -> u81.32.0 (const: 1.44.0)[src][−]

Create a native endian integer value from its representation as a byte array in big endian.

Examples

let value = u8::from_be_bytes([0x12]);
assert_eq!(value, 0x12);
Run

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto;

fn read_be_u8(input: &mut &[u8]) -> u8 {
    let (int_bytes, rest) = input.split_at(std::mem::size_of::<u8>());
    *input = rest;
    u8::from_be_bytes(int_bytes.try_into().unwrap())
}
Run

pub const fn from_le_bytes(bytes: [u8; 1]) -> u81.32.0 (const: 1.44.0)[src][−]

Create a native endian integer value from its representation as a byte array in little endian.

Examples

let value = u8::from_le_bytes([0x12]);
assert_eq!(value, 0x12);
Run

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto;

fn read_le_u8(input: &mut &[u8]) -> u8 {
    let (int_bytes, rest) = input.split_at(std::mem::size_of::<u8>());
    *input = rest;
    u8::from_le_bytes(int_bytes.try_into().unwrap())
}
Run

pub const fn from_ne_bytes(bytes: [u8; 1]) -> u81.32.0 (const: 1.44.0)[src][−]

Create a native endian integer value from its memory representation as a byte array in native endianness.

As the target platform’s native endianness is used, portable code likely wants to use from_be_bytes or from_le_bytes, as appropriate instead.

Examples

let value = u8::from_ne_bytes(if cfg!(target_endian = "big") {
    [0x12]
} else {
    [0x12]
});
assert_eq!(value, 0x12);
Run

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto;

fn read_ne_u8(input: &mut &[u8]) -> u8 {
    let (int_bytes, rest) = input.split_at(std::mem::size_of::<u8>());
    *input = rest;
    u8::from_ne_bytes(int_bytes.try_into().unwrap())
}
Run

pub const fn min_value() -> u81.0.0 (const: 1.32.0)[src][−]

👎 Deprecating in a future Rust version:

replaced by the MIN associated constant on this type

New code should prefer to use u8::MIN instead.

Returns the smallest value that can be represented by this integer type.

pub const fn max_value() -> u81.0.0 (const: 1.32.0)[src][−]

👎 Deprecating in a future Rust version:

replaced by the MAX associated constant on this type

New code should prefer to use u8::MAX instead.

Returns the largest value that can be represented by this integer type.

pub const fn is_ascii(&self) -> bool1.23.0 (const: 1.43.0)[src][−]

Checks if the value is within the ASCII range.

Examples

let ascii = 97u8;
let non_ascii = 150u8;

assert!(ascii.is_ascii());
assert!(!non_ascii.is_ascii());
Run

pub const fn to_ascii_uppercase(&self) -> u81.23.0 (const: 1.52.0)[src][−]

Makes a copy of the value in its ASCII upper case equivalent.

ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.

To uppercase the value in-place, use make_ascii_uppercase.

Examples

let lowercase_a = 97u8;

assert_eq!(65, lowercase_a.to_ascii_uppercase());
Run

pub const fn to_ascii_lowercase(&self) -> u81.23.0 (const: 1.52.0)[src][−]

Makes a copy of the value in its ASCII lower case equivalent.

ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.

To lowercase the value in-place, use make_ascii_lowercase.

Examples

let uppercase_a = 65u8;

assert_eq!(97, uppercase_a.to_ascii_lowercase());
Run

pub const fn eq_ignore_ascii_case(&self, other: &u8) -> bool1.23.0 (const: 1.52.0)[src][−]

Checks that two values are an ASCII case-insensitive match.

This is equivalent to to_ascii_lowercase(a) == to_ascii_lowercase(b).

Examples

let lowercase_a = 97u8;
let uppercase_a = 65u8;

assert!(lowercase_a.eq_ignore_ascii_case(&uppercase_a));
Run

pub fn make_ascii_uppercase(&mut self)1.23.0[src][−]

Converts this value to its ASCII upper case equivalent in-place.

ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.

To return a new uppercased value without modifying the existing one, use to_ascii_uppercase.

Examples

let mut byte = b'a';

byte.make_ascii_uppercase();

assert_eq!(b'A', byte);
Run

pub fn make_ascii_lowercase(&mut self)1.23.0[src][−]

Converts this value to its ASCII lower case equivalent in-place.

ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.

To return a new lowercased value without modifying the existing one, use to_ascii_lowercase.

Examples

let mut byte = b'A';

byte.make_ascii_lowercase();

assert_eq!(b'a', byte);
Run

pub const fn is_ascii_alphabetic(&self) -> bool1.24.0 (const: 1.47.0)[src][−]

Checks if the value is an ASCII alphabetic character:

  • U+0041 ‘A’ ..= U+005A ‘Z’, or
  • U+0061 ‘a’ ..= U+007A ‘z’.

Examples

let uppercase_a = b'A';
let uppercase_g = b'G';
let a = b'a';
let g = b'g';
let zero = b'0';
let percent = b'%';
let space = b' ';
let lf = b'\n';
let esc = 0x1b_u8;

assert!(uppercase_a.is_ascii_alphabetic());
assert!(uppercase_g.is_ascii_alphabetic());
assert!(a.is_ascii_alphabetic());
assert!(g.is_ascii_alphabetic());
assert!(!zero.is_ascii_alphabetic());
assert!(!percent.is_ascii_alphabetic());
assert!(!space.is_ascii_alphabetic());
assert!(!lf.is_ascii_alphabetic());
assert!(!esc.is_ascii_alphabetic());
Run

pub const fn is_ascii_uppercase(&self) -> bool1.24.0 (const: 1.47.0)[src][−]

Checks if the value is an ASCII uppercase character: U+0041 ‘A’ ..= U+005A ‘Z’.

Examples

let uppercase_a = b'A';
let uppercase_g = b'G';
let a = b'a';
let g = b'g';
let zero = b'0';
let percent = b'%';
let space = b' ';
let lf = b'\n';
let esc = 0x1b_u8;

assert!(uppercase_a.is_ascii_uppercase());
assert!(uppercase_g.is_ascii_uppercase());
assert!(!a.is_ascii_uppercase());
assert!(!g.is_ascii_uppercase());
assert!(!zero.is_ascii_uppercase());
assert!(!percent.is_ascii_uppercase());
assert!(!space.is_ascii_uppercase());
assert!(!lf.is_ascii_uppercase());
assert!(!esc.is_ascii_uppercase());
Run

pub const fn is_ascii_lowercase(&self) -> bool1.24.0 (const: 1.47.0)[src][−]

Checks if the value is an ASCII lowercase character: U+0061 ‘a’ ..= U+007A ‘z’.

Examples

let uppercase_a = b'A';
let uppercase_g = b'G';
let a = b'a';
let g = b'g';
let zero = b'0';
let percent = b'%';
let space = b' ';
let lf = b'\n';
let esc = 0x1b_u8;

assert!(!uppercase_a.is_ascii_lowercase());
assert!(!uppercase_g.is_ascii_lowercase());
assert!(a.is_ascii_lowercase());
assert!(g.is_ascii_lowercase());
assert!(!zero.is_ascii_lowercase());
assert!(!percent.is_ascii_lowercase());
assert!(!space.is_ascii_lowercase());
assert!(!lf.is_ascii_lowercase());
assert!(!esc.is_ascii_lowercase());
Run

pub const fn is_ascii_alphanumeric(&self) -> bool1.24.0 (const: 1.47.0)[src][−]

Checks if the value is an ASCII alphanumeric character:

  • U+0041 ‘A’ ..= U+005A ‘Z’, or
  • U+0061 ‘a’ ..= U+007A ‘z’, or
  • U+0030 ‘0’ ..= U+0039 ‘9’.

Examples

let uppercase_a = b'A';
let uppercase_g = b'G';
let a = b'a';
let g = b'g';
let zero = b'0';
let percent = b'%';
let space = b' ';
let lf = b'\n';
let esc = 0x1b_u8;

assert!(uppercase_a.is_ascii_alphanumeric());
assert!(uppercase_g.is_ascii_alphanumeric());
assert!(a.is_ascii_alphanumeric());
assert!(g.is_ascii_alphanumeric());
assert!(zero.is_ascii_alphanumeric());
assert!(!percent.is_ascii_alphanumeric());
assert!(!space.is_ascii_alphanumeric());
assert!(!lf.is_ascii_alphanumeric());
assert!(!esc.is_ascii_alphanumeric());
Run

pub const fn is_ascii_digit(&self) -> bool1.24.0 (const: 1.47.0)[src][−]

Checks if the value is an ASCII decimal digit: U+0030 ‘0’ ..= U+0039 ‘9’.

Examples

let uppercase_a = b'A';
let uppercase_g = b'G';
let a = b'a';
let g = b'g';
let zero = b'0';
let percent = b'%';
let space = b' ';
let lf = b'\n';
let esc = 0x1b_u8;

assert!(!uppercase_a.is_ascii_digit());
assert!(!uppercase_g.is_ascii_digit());
assert!(!a.is_ascii_digit());
assert!(!g.is_ascii_digit());
assert!(zero.is_ascii_digit());
assert!(!percent.is_ascii_digit());
assert!(!space.is_ascii_digit());
assert!(!lf.is_ascii_digit());
assert!(!esc.is_ascii_digit());
Run

pub const fn is_ascii_hexdigit(&self) -> bool1.24.0 (const: 1.47.0)[src][−]

Checks if the value is an ASCII hexadecimal digit:

  • U+0030 ‘0’ ..= U+0039 ‘9’, or
  • U+0041 ‘A’ ..= U+0046 ‘F’, or
  • U+0061 ‘a’ ..= U+0066 ‘f’.

Examples

let uppercase_a = b'A';
let uppercase_g = b'G';
let a = b'a';
let g = b'g';
let zero = b'0';
let percent = b'%';
let space = b' ';
let lf = b'\n';
let esc = 0x1b_u8;

assert!(uppercase_a.is_ascii_hexdigit());
assert!(!uppercase_g.is_ascii_hexdigit());
assert!(a.is_ascii_hexdigit());
assert!(!g.is_ascii_hexdigit());
assert!(zero.is_ascii_hexdigit());
assert!(!percent.is_ascii_hexdigit());
assert!(!space.is_ascii_hexdigit());
assert!(!lf.is_ascii_hexdigit());
assert!(!esc.is_ascii_hexdigit());
Run

pub const fn is_ascii_punctuation(&self) -> bool1.24.0 (const: 1.47.0)[src][−]

Checks if the value is an ASCII punctuation character:

  • U+0021 ..= U+002F ! " # $ % & ' ( ) * + , - . /, or
  • U+003A ..= U+0040 : ; < = > ? @, or
  • U+005B ..= U+0060 [ \ ] ^ _ ` , or
  • U+007B ..= U+007E { | } ~

Examples

let uppercase_a = b'A';
let uppercase_g = b'G';
let a = b'a';
let g = b'g';
let zero = b'0';
let percent = b'%';
let space = b' ';
let lf = b'\n';
let esc = 0x1b_u8;

assert!(!uppercase_a.is_ascii_punctuation());
assert!(!uppercase_g.is_ascii_punctuation());
assert!(!a.is_ascii_punctuation());
assert!(!g.is_ascii_punctuation());
assert!(!zero.is_ascii_punctuation());
assert!(percent.is_ascii_punctuation());
assert!(!space.is_ascii_punctuation());
assert!(!lf.is_ascii_punctuation());
assert!(!esc.is_ascii_punctuation());
Run

pub const fn is_ascii_graphic(&self) -> bool1.24.0 (const: 1.47.0)[src][−]

Checks if the value is an ASCII graphic character: U+0021 ‘!’ ..= U+007E ‘~’.

Examples

let uppercase_a = b'A';
let uppercase_g = b'G';
let a = b'a';
let g = b'g';
let zero = b'0';
let percent = b'%';
let space = b' ';
let lf = b'\n';
let esc = 0x1b_u8;

assert!(uppercase_a.is_ascii_graphic());
assert!(uppercase_g.is_ascii_graphic());
assert!(a.is_ascii_graphic());
assert!(g.is_ascii_graphic());
assert!(zero.is_ascii_graphic());
assert!(percent.is_ascii_graphic());
assert!(!space.is_ascii_graphic());
assert!(!lf.is_ascii_graphic());
assert!(!esc.is_ascii_graphic());
Run

pub const fn is_ascii_whitespace(&self) -> bool1.24.0 (const: 1.47.0)[src][−]

Checks if the value is an ASCII whitespace character: U+0020 SPACE, U+0009 HORIZONTAL TAB, U+000A LINE FEED, U+000C FORM FEED, or U+000D CARRIAGE RETURN.

Rust uses the WhatWG Infra Standard’s definition of ASCII whitespace. There are several other definitions in wide use. For instance, the POSIX locale includes U+000B VERTICAL TAB as well as all the above characters, but—from the very same specification—the default rule for “field splitting” in the Bourne shell considers only SPACE, HORIZONTAL TAB, and LINE FEED as whitespace.

If you are writing a program that will process an existing file format, check what that format’s definition of whitespace is before using this function.

Examples

let uppercase_a = b'A';
let uppercase_g = b'G';
let a = b'a';
let g = b'g';
let zero = b'0';
let percent = b'%';
let space = b' ';
let lf = b'\n';
let esc = 0x1b_u8;

assert!(!uppercase_a.is_ascii_whitespace());
assert!(!uppercase_g.is_ascii_whitespace());
assert!(!a.is_ascii_whitespace());
assert!(!g.is_ascii_whitespace());
assert!(!zero.is_ascii_whitespace());
assert!(!percent.is_ascii_whitespace());
assert!(space.is_ascii_whitespace());
assert!(lf.is_ascii_whitespace());
assert!(!esc.is_ascii_whitespace());
Run

pub const fn is_ascii_control(&self) -> bool1.24.0 (const: 1.47.0)[src][−]

Checks if the value is an ASCII control character: U+0000 NUL ..= U+001F UNIT SEPARATOR, or U+007F DELETE. Note that most ASCII whitespace characters are control characters, but SPACE is not.

Examples

let uppercase_a = b'A';
let uppercase_g = b'G';
let a = b'a';
let g = b'g';
let zero = b'0';
let percent = b'%';
let space = b' ';
let lf = b'\n';
let esc = 0x1b_u8;

assert!(!uppercase_a.is_ascii_control());
assert!(!uppercase_g.is_ascii_control());
assert!(!a.is_ascii_control());
assert!(!g.is_ascii_control());
assert!(!zero.is_ascii_control());
assert!(!percent.is_ascii_control());
assert!(!space.is_ascii_control());
assert!(lf.is_ascii_control());
assert!(esc.is_ascii_control());
Run

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK