4

深入理解Go Context

 3 years ago
source link: https://www.cnblogs.com/itbsl/p/14277002.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

在Go语言并发编程中,用一个goroutine来处理一个任务,而它又会创建多个goroutine来负责不同子任务的场景非常常见。如下图

这些场景中,往往会需要在API边界之间以及过程之间传递截止时间、取消信号或与其它请求相关的数据

谁是性能卡点呢?得通知它们任务取消了。

这时候就可以使用Context了。context包在Go1.7的时候被加入到官方库中。

context包的内容可以概括为,一个接口,四个具体实现,还有六个函数。

Context接口提供了四个方法,下面是Context的接口

type Context interface {
	Deadline() (deadline time.Time, ok bool)
	Done() <-chan struct{}
	Err() error
	Value(key interface{}) interface{}
}

emptyCtx类型

emptyCtx本质上是一个整型, *emptyCtx对Context接口的实现,只是简单的返回nil,false,实际上什么也没做。如下代码所示:

type emptyCtx int

func (*emptyCtx) Deadline() (deadline time.Time, ok bool) {
	return
}

func (*emptyCtx) Done() <-chan struct{} {
	return nil
}

func (*emptyCtx) Err() error {
	return nil
}

func (*emptyCtx) Value(key interface{}) interface{} {
	return nil
}

Background和TODO这两个函数内部都会创建emptyCtx

var (
	background = new(emptyCtx)
	todo       = new(emptyCtx)
)

func Background() Context {
	return background
}

func TODO() Context {
	return todo
}

其中Background主要用于在初始化时获取一个Context(从代码中可知本质是一个*emptyCtx,而emptCtx本质上是一个Int),这就是Background()函数返回的变量结构。

而TODO()函数,官方文档建议在本来应该使用外层传递的ctx而外层却没有传递的地方使用,就像函数名称表达的含义一样,留下一个TODO。

cancelCtx类型

再来看cancelCtx类型,cancleCtx定义如下

// cancelCtx可以被取消。 取消后,它也会取消所有实现取消方法的子级。
type cancelCtx struct {
	Context

	mu       sync.Mutex            // protects following fields
	done     chan struct{}         // created lazily, closed by first cancel call
	children map[canceler]struct{} // set to nil by the first cancel call
	err      error                 // set to non-nil by the first cancel call
}

func (c *cancelCtx) Value(key interface{}) interface{} {
	if key == &cancelCtxKey {
		return c
	}
	return c.Context.Value(key)
}

func (c *cancelCtx) Done() <-chan struct{} {
	c.mu.Lock()
	if c.done == nil {
		c.done = make(chan struct{})
	}
	d := c.done
	c.mu.Unlock()
	return d
}

func (c *cancelCtx) Err() error {
	c.mu.Lock()
	err := c.err
	c.mu.Unlock()
	return err
}

这是一种可取消的Context,done用于获取该Context的取消通知,children用于存储以当前节点为根节点的所有可取消的Context,以便在根节点取消时,可以把它们一并取消,err用于存储取消时指定的错误信息,而这个mu就是用来保护这几个字段的锁,以保障cancelCtx是线程安全的。

而WithCancel函数,可以把一个Context包装为cancelCtx,并提供一个取消函数,调用它可以Cancel对应的Context

func WithCancel(parent Context) (ctx Context, cancel CancelFunc) {
	if parent == nil {
		panic("cannot create context from nil parent")
	}
	c := newCancelCtx(parent)
	propagateCancel(parent, &c)
	return &c, func() { c.cancel(true, Canceled) }
}

示例代码:

ctx := context.Background()
ctx1, cancel := context.WithCancel(ctx)

timerCtx类型

再来看timerCtx,timerCtx定义如下

type timerCtx struct {
	cancelCtx
	timer *time.Timer // Under cancelCtx.mu.

	deadline time.Time
}

它在cancelCtx的基础上,又封装了一个定时器和一个截止时间,这样既可以根据需要主动取消,也可以在到达deadline时,通过timer来触发取消动作。

要注意,这个timer也会由cancelCtx.mu来保护,确保取消操作也是线程安全的。

通过WithDeadline和WithTimeout函数,都可以创建timerCtx,区别是WithDeadline函数需要指定一个时间点,而WithTimeout函数接收一个时间段。

接下来,我们基于ctx1构造一个timerCtx

ctx := context.Background()
ctx1, cancel := context.WithCancel(ctx)

deadline := time.Now().Add(time.Second)
ctx2, cancel := context.WithDeadline(ctx1, deadline)

这个定时器会在deadline到达时,调用cancelCtx的取消函数,现在可以看到ctx2是基于ctx1创建的,而ctx1又是基于ctx创建的,基于每个Context可以创建多个Context,这样就形成了一个Context树,每个节点都可以有零个或多个子节点,可取消的Context都会被注册到离它最近的、可取消的祖先节点中。对ctx2来说离它最新的、可取消的祖先节点是ctx1

所以在ctx1这里的children map中,会增加ctx2这组键值对

如果ctx2先取消,就只会影响到以它为根节点的Context,而如果ctx1先取消,就可以根据children map中的记录,把ctx1子节点中所有可取消的Context全部Cancel掉。

最后来看valueCtx类型

valueCtx类型

首先来看valueCtx的定义

type valueCtx struct {
	Context
	key, val interface{}
}

它用来支持键值对打包,WithValue函数可以给Context附加一个键值对信息,这样就可以通过Context传递数据了

var keyA string = "keyA"
ctx := context.Background()
ctxA := context.WithValue(ctx, keyA, "valA")

现在我们给ctx附加一个键值对keyA=>valA,变量ctxA也是Context接口类型,动态类型为*valueCtx,data指向一个valueCtx结构体,第一个字段是它的父级Context,key和val字段都是空接口类型,keyA的动态类型为string,动态值是string类型的变量keyA,val的动态类型同样是string,动态值为valA,

下面我们再基于ctxA,附加一个key相等但val不相等的键值对keyA=>eggo,ctxC的动态值指向这样一个valueCtx,父级Context自然是ctxA,key与ctxA中的相同,但是val的值与ctxA中的不相等

通过ctxC获取kyA和keyC对应的值时会发现keyC覆盖了keyA对应的val,要找到原因,就要先看看Value方法是怎么工作的

func (c *valueCtx) Value(key interface{}) interface{} {
	if c.key == key {
		return c.val
	}
	return c.Context.Value(key)
}

首先它会比较当前Context中的key是否等于要查找的key,因为keyA等于keyC,所以对keyA的查找会直接锁定到ctxC这里的val,因而出现了子节点覆盖父节点数据的情况,为了规避这种情况,最好不要直接使用string、int这些基础类型作为Key,而是用自定义类型包装一下,就像下面这样,把keyA定义为keytypea类型,keyC定义为keytypec类型,这样再次通过ctxC获取keyA时,因为key的类型不相同,第一步key相等性比较不通过,就会委托父节点继续查找,进而找到正确的val

所以说valueCtx之间通过Context字段形成了一个链表结构,使用Context传递数据时还要注意,Context本身本着不可改变(immutable)的模式设计的,所以不要试图修改ctx里保存的值,在http、sql相关的库中,都提供了对Context的支持,方便我们在处理请求时,实现超时自动取消,或传递请求相关的控制数据等等

了解了context包中,一个接口,四种具体实现,以及六个函数的基本情况,有助于我们理解Context的工作原理

context源码

幼麟实验室


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK