12

经典动态规划:子集背包问题

 4 years ago
source link: https://labuladong.github.io/algo/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%B3%BB%E5%88%97/%E8%83%8C%E5%8C%85%E5%AD%90%E9%9B%86.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

背包问题变体之子集分割

souyisou.png

👆让天下没有难刷的算法!若 GitBook 访问太慢,可尝试 GiteePagesGitHubPages

相关推荐:

读完本文,你不仅学会了算法套路,还可以顺便去 LeetCode 上拿下如下题目:

416.分割等和子集(中等)


上篇文章 经典动态规划:0-1 背包问题 详解了通用的 0-1 背包问题,今天来看看背包问题的思想能够如何运用到其他算法题目。

而且,不是经常有读者问,怎么将二维动态规划压缩成一维动态规划吗?这就是状态压缩,很容易的,本文也会提及这种技巧。

读者在阅读本文之前务必读懂前文 经典动态规划:0-1 背包问题 中讲的套路,因为本文就是按照背包问题的解题模板来讲解的

一、问题分析

先看一下题目:

title.jpg

算法的函数签名如下:

// 输入一个集合,返回是否能够分割成和相等的两个子集
bool canPartition(vector<int>& nums);

对于这个问题,看起来和背包没有任何关系,为什么说它是背包问题呢?

首先回忆一下背包问题大致的描述是什么:

给你一个可装载重量为 W 的背包和 N 个物品,每个物品有重量和价值两个属性。其中第 i 个物品的重量为 wt[i],价值为 val[i],现在让你用这个背包装物品,最多能装的价值是多少?

那么对于这个问题,我们可以先对集合求和,得出 sum,把问题转化为背包问题:

给一个可装载重量为 sum / 2 的背包和 N 个物品,每个物品的重量为 nums[i]。现在让你装物品,是否存在一种装法,能够恰好将背包装满

你看,这就是背包问题的模型,甚至比我们之前的经典背包问题还要简单一些,下面我们就直接转换成背包问题,开始套前文讲过的背包问题框架即可。

二、解法分析

第一步要明确两点,「状态」和「选择」

这个前文 经典动态规划:背包问题 已经详细解释过了,状态就是「背包的容量」和「可选择的物品」,选择就是「装进背包」或者「不装进背包」。

第二步要明确 dp 数组的定义

按照背包问题的套路,可以给出如下定义:

dp[i][j] = x 表示,对于前 i 个物品,当前背包的容量为 j 时,若 xtrue,则说明可以恰好将背包装满,若 xfalse,则说明不能恰好将背包装满。

比如说,如果 dp[4][9] = true,其含义为:对于容量为 9 的背包,若只是用前 4 个物品,可以有一种方法把背包恰好装满。

或者说对于本题,含义是对于给定的集合中,若只对前 4 个数字进行选择,存在一个子集的和可以恰好凑出 9。

根据这个定义,我们想求的最终答案就是 dp[N][sum/2],base case 就是 dp[..][0] = truedp[0][..] = false,因为背包没有空间的时候,就相当于装满了,而当没有物品可选择的时候,肯定没办法装满背包。

第三步,根据「选择」,思考状态转移的逻辑

回想刚才的 dp 数组含义,可以根据「选择」对 dp[i][j] 得到以下状态转移:

如果不把 nums[i] 算入子集,或者说你不把这第 i 个物品装入背包,那么是否能够恰好装满背包,取决于上一个状态 dp[i-1][j],继承之前的结果。

如果把 nums[i] 算入子集,或者说你把这第 i 个物品装入了背包,那么是否能够恰好装满背包,取决于状态 dp[i-1][j-nums[i-1]]

首先,由于 i 是从 1 开始的,而数组索引是从 0 开始的,所以第 i 个物品的重量应该是 nums[i-1],这一点不要搞混。

dp[i - 1][j-nums[i-1]] 也很好理解:你如果装了第 i 个物品,就要看背包的剩余重量 j - nums[i-1] 限制下是否能够被恰好装满。

换句话说,如果 j - nums[i-1] 的重量可以被恰好装满,那么只要把第 i 个物品装进去,也可恰好装满 j 的重量;否则的话,重量 j 肯定是装不满的。

最后一步,把伪码翻译成代码,处理一些边界情况

以下是我的 C++ 代码,完全翻译了之前的思路,并处理了一些边界情况:

bool canPartition(vector<int>& nums) {
    int sum = 0;
    for (int num : nums) sum += num;
    // 和为奇数时,不可能划分成两个和相等的集合
    if (sum % 2 != 0) return false;
    int n = nums.size();
    sum = sum / 2;
    vector<vector<bool>> 
        dp(n + 1, vector<bool>(sum + 1, false));
    // base case
    for (int i = 0; i <= n; i++)
        dp[i][0] = true;

    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= sum; j++) {
            if (j - nums[i - 1] < 0) {
               // 背包容量不足,不能装入第 i 个物品
                dp[i][j] = dp[i - 1][j]; 
            } else {
                // 装入或不装入背包
                dp[i][j] = dp[i - 1][j] || dp[i - 1][j-nums[i-1]];
            }
        }
    }
    return dp[n][sum];
}

三、进行状态压缩

再进一步,是否可以优化这个代码呢?注意到 dp[i][j] 都是通过上一行 dp[i-1][..] 转移过来的,之前的数据都不会再使用了。

所以,我们可以进行状态压缩,将二维 dp 数组压缩为一维,节约空间复杂度:

bool canPartition(vector<int>& nums) {
    int sum = 0, n = nums.size();
    for (int num : nums) sum += num;
    if (sum % 2 != 0) return false;
    sum = sum / 2;
    vector<bool> dp(sum + 1, false);
    // base case
    dp[0] = true;

    for (int i = 0; i < n; i++) 
        for (int j = sum; j >= 0; j--) 
            if (j - nums[i] >= 0) 
                dp[j] = dp[j] || dp[j - nums[i]];

    return dp[sum];
}

这就是状态压缩,其实这段代码和之前的解法思路完全相同,只在一行 dp 数组上操作,i 每进行一轮迭代,dp[j] 其实就相当于 dp[i-1][j],所以只需要一维数组就够用了。

唯一需要注意的是 j 应该从后往前反向遍历,因为每个物品(或者说数字)只能用一次,以免之前的结果影响其他的结果

至此,子集切割的问题就完全解决了,时间复杂度 O(n*sum),空间复杂度 O(sum)。

_____________

《labuladong 的算法小抄》已经出版,关注公众号「labuladong」查看详情;后台回复关键词「进群」可加入算法群,大家一起刷题/内推

%E6%B3%A5%E7%9F%B3%E6%B5%81.PNG
Copyright © labuladong 2020 all right reserved,powered by Gitbook该文件修订时间: 2020-12-21 21:35:18

Recommend

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK