

FuseSeg:用于自动驾驶领域的RGB和热成像数据融合网络
source link: https://mp.weixin.qq.com/s/SDp7SHzdLRLRuwCqRrYnaw
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

FuseSeg:用于自动驾驶领域的RGB和热成像数据融合网络
点击上方“3D视觉工坊”,选择“星标”
干货第一时间送达
论文下载:http://ieeexplore.ieee.org.简介:城市场景的语义分割是自动驾驶应用的重要组成部分。随着深度学习技术的兴起,取得了巨大的进步。目前的语义分割网络大多使用单一模式的感知数据,通常是可见光摄像机产生的RGB图像。然而,当光照条件不满足时,如昏暗或黑暗时,这些网络的分割性能容易受到影响。我们发现热成像相机产生的热图像对具有挑战性的光照条件是稳健的。因此,在本文中,提出了一种新的RGB和热数据融合网络FuseSeg, 来实现更好的城市场景语义分割性能。实验结果表明,我们的网络性能优于现有的网络。拟解决问题:本文研究的是在照明条件不满足时城市场景的语义分割问题。通过RGB和热数据的信息融合,解决了这一问题。构建端到端的深度神经网络,以RGB图像和热图像为输入,输出像素级语义标签。我们的网络可以用于理解城市场景,这是许多自动驾驶任务的基本组成部分,如环境建模、避障、运动预测和规划。此外,我们的网络设计简单,可以很容易地使用各种深度学习框架来实现,这有利于不同硬件或软件平台上的应用程序。
本文的贡献如下:1)提出一种新的用于城市场景语义分割的RGB-thermal融合网络。该网络可以在光线条件不满足的情况下,如昏暗、完全黑暗或迎面灯等情况下,得到准确的结果,优于单模态网络。2)利用Monte Carlo (MC)dropout技术构造贝叶斯模糊算法,分析语义分割结果的不确定性。比较了不同dropout率下的性能。3)在公共数据集上评估我们的网络,这些结果表明我们优于现有的先进网络。方法:下图所示为FuseSeg的总体结构,由两个编码器从输入图像提取特征和一个解码器恢复分辨率组成。DenseNet作为编码器的主干。在网络中提出了一种新的TSF策略,可以恢复密集下行采样所造成的空间信息损失。在第一阶段,在RGB编码器中通过元素求和将相应的热图和RGB特征图分层融合。在第二阶段,通过张量级联将融合后的除底部特征图外的特征图与解码器中对应的特征图再次融合。下面的一个直接复制到解码器。
使用DenseNet作为主干,去掉最后的池化层保持分辨率和后面的分类层。解码器:解码器的设计目的是逐步将特征图的分辨率恢复到原始分辨率。本文解码器主要包括三个模块:一个特征提取器按顺序包含两个卷积层,一个上采样器和一个输出块,输出块都包含一个转置的卷积层。注意,在特征提取器和上采样中卷积层和反卷积层后面都有一个批处理归一化层和一个ReLu激活层。卷积层和反卷积层的详细配置显示在下表中。
评价指标: Accuracy (Acc) 和intersection over union (IoU)
消融实验:
DenseNet不同架构的结果如下
总的实验结果如下:
用于推断贝叶斯网络的模型参数的后验分布,进行不确定性估计。通过在初始块之后插入dropout层,最大池层,以及RGB和热编码器的1-4个过渡层来构建贝叶斯FuseSeg。在运行时,对模型采样T次,设T = 50。计算每个像素的不确定性值:
重磅!3DCVer-学术论文写作投稿 交流群已成立
扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。
▲长按关注公众号
3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近1000+星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款
圈里有高质量教程资料、可答疑解惑、助你高效解决问题
Recommend
-
49
通勤是我们日常生活的一个重要组成部分,而其中包括的车辆驾驶问题一直是人工智能的热门话题。本文我们就谈谈自动驾驶中的图像分割应用,主要介...
-
26
编者按:本文来自阿尔法公社,创业邦经授权转载,封面图来自摄图网。 自动驾驶的时代终将到来,那么在未来的自动驾驶领域,谁将...
-
29
自动驾驶领域:一种实时高精度的城市道路场景语义分割方法 Original...
-
9
点击上方“3D视觉工坊”,选择“星标”干货第一时间送达原文:ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation论文链接:https://arxiv.org/abs/1803.06815v2主要思想
-
14
导读车道线检测 + 距离告警 + 转弯曲率半径计算。代码:https://github.com/MaybeShewill-CV/lanenet-lane-detection
-
8
5G、物联网、自动驾驶,这些领域都有这家公司的身影 成立于 1985 年的高通公司,如今业务已经涉及人们生活中的方方面面,智能手机、集成电路...
-
12
RoadMap:一种用于自动驾驶视觉定位的轻质语义地图(ICRA2021)作者:杨凌昊|来源:微信公众号:3D视觉工坊注:文末附有【视觉S...
-
11
Mobileye宣布推出用于自动驾驶的新EyeQ Ultra系统芯片-汽车电子-与非网 在拉...
-
5
本特勒成立“Holon”子公司,用于自动驾驶穿梭巴士2022/11/07 20:49|作者
-
5
AmodalSynthDrive:一个用于自动驾驶的合成非模态感知数据集 作者:自动驾驶专栏 2023-10-11 10:22:55 本文介绍了AmodalSynthDrive:一个用于自动驾驶的合成非模态感知数据集。与人类不同,即使在部分遮挡的情况下...
About Joyk
Aggregate valuable and interesting links.
Joyk means Joy of geeK