

多目标跟踪 (MOT) 论文随笔-SIMPLE ONLINE AND REALTIME TRACKING (SORT)
source link: https://bbs.cvmart.net/articles/160
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

多目标跟踪 (MOT) 论文随笔-SIMPLE ONLINE AND REALTIME TRACKING (SORT)
1年前 ⋅ 3337 ⋅ 1 ⋅ 0
原文链接地址:https://www.cnblogs.com/yanwei-li/p/8643336.html
网上已有很多关于MOT的文章,此系列仅为个人阅读随笔,便于初学者的共同成长。若希望详细了解,建议阅读原文。
本文是使用 tracking by detection 方法进行多目标跟踪的文章,是后续deep sort的基础(Deep SORT见后一篇随笔)。
论文地址:https://arxiv.org/pdf/1602.00763.pdf
代码地址:https://github.com/abewley/sort
本方法最大的特点是高效地实现了基于Faster-RCNN的detection并使用Kalman滤波以及 Hungarian算法进行跟踪。提高了speed同时达到了comparable state-of-the-art的accuracy。

以Re-id的形式整合复杂性会增加跟踪框架的巨大开销,会限制其在实时程序中的使用;
以往方法使用delay making difficult decisions的方法来处理不确定性较高的匹配,这使得组合复杂度很大,难以进行实时识别;
以往进行两部工作来用相邻图片的几何和外观关联轨迹的方法需要使用batch,难以进行on-line tracking。
将tracking对象状态传播到未来的帧中(主要使用卡尔曼滤波以及线性速度的假设),将当前的检测与现有的对象相关联,并管理被跟踪对象的age。
1. 目标检测

使用Faster-RCNN进行detection,文章通过对比来说明detection的质量对后续的tracking至关重要。
2. 估计模型
当检测与目标相关联时,检测到的边界框用于更新目标状态,其中速度分量通过卡尔曼滤波框架最优地求解;
如果target没有跟detection相连,就用线性速度模型对taeget进行预测;(这种预测错误率较高)
3. 数据组合
在将detection分配给现有track时,通过预测其在当前帧中的新位置来估计每个目标
使用每个detection和所有预测的bonding box的IOU距离来计算assignment cost matrix;
小于IOU阈值的assignment 会被拒绝,源码中阈值设置为0.3;
文章指出使用IOU distance 可以解决 tracking 中的短暂遮挡问题,这是由于IOU distance更倾向于检测相似尺寸(个人理解是因为IOU distance的计算使用了detection 和 prediction 的共同区域,而如果相邻帧产生轻微遮挡,共同区域的变化不大,从而保证了短暂遮挡的有效track,当然如果完全遮挡那么assignment肯定会出错),但是如果遮挡时间较长会重新分配track,造成出错。(较长时间的遮挡问题在后续的deep sort论文中使用appearance特征进行缓解)。
4. Track的建立和删除
如果detection和target的重叠率小于IOU阈值,认为此track应当删除;(个人认为这种完全基于几何预测bonding box 的位置来判断会造成比较大的错误率以及 ID switch,当然后续的deep sort 也对这方面进行了改进。)
如果在Tlost 帧内没有对应的 detection 与 track 匹配,就将此track删除。文中Tlost 设为1,文中指出是因为没有匹配所使用的固定速度模型效果很差并且帧数过多的re-id问题超出了本文讨论的范围。(个人认为主要还是固定速度的预测模型的问题)。
文章结果还是挺不错的,MOTA也接近state-of-the-art,速度方面在 i7 2.5GHz的机器上可以达到260Hz的速度,能够满足实时性的要求。但是由于预测模型和IOU distance的限制导致 ID switch相对于其他方法高了许多。

版权声明:自由转载-非商用-非衍生-保持署名(创意共享3.0许可证)
Recommend
-
68
多目标跟踪 | AI产品经理需要了解的CV通识(三)
-
88
目录概述31.1.背景31.2.目标跟踪问题描述31.3.目标跟踪测试数据集及性能评价标准4算法选型102.1.现有算法分类102.2.图像目标跟踪方法111.概述1.1.背景行为识别的前提是需要对人体目标进行识别和跟踪,现阶段我们已经通过使用开源人体姿态估计系统openpose实现了人...
-
223
README.md Deep SORT Introduction This repository contains code for Simple Online and Realtime Tracking with a Deep Association Metric...
-
44
README.md SORT A simple online and realtime tracking algorithm for 2D multiple object tracking in video sequences. See an example
-
32
加入极市 专业CV交流群,与 6000+来自腾讯,华为,百度,北大,清华,中科院 等名企名校视觉开发者互动交流!更有机会与 李开复老师 等大牛群内...
-
43
小叽导读 : 视觉目标跟踪 (visual object tracking) 是计算机视觉 (computer vis...
-
22
本站内容均来自兴趣收集,如不慎侵害的您的相关权益,请留言告知,我们将尽快删除.谢谢. 对于物体遮挡、形变、背景杂斑、尺度变换、快速运动等场景, 如何又快又准确的预测结果? 实验论证,通过VOT(Visual Object Tracking,...
-
8
“最全目标跟踪资源推荐。” Visual Tracking Paper List Pape...
-
10
作者:CV君 来源:微信公众号@我爱计算机视觉跟踪在计算机视觉里有很广泛的内涵,本文所指的跟踪为通用目标跟踪,不包括比如人脸特征点跟踪、视线跟踪等特定领域。 本文总结了 19 篇相关论文,列出了代码地址,并大...
-
6
这里存放阅读论文/读代码时所记录下的一些零碎笔记。 由于这部分活动在记录笔记时,出于时间与重要性考虑,只会记录下较为重要的一部分,不会完整记录,因此单篇笔记的篇幅不会太长。 原先是想着把这些随笔放到周...
About Joyk
Aggregate valuable and interesting links.
Joyk means Joy of geeK