5

造芯片真的很难吗?

 3 years ago
source link: https://mp.weixin.qq.com/s?__biz=MzA3MDMwOTcwMg%3D%3D&%3Bmid=2650008722&%3Bidx=1&%3Bsn=494f545bac503d8c7ec1b57e54a462c5
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

今年以来,芯片制造无疑引起了许多人的兴趣,更有相当多的人在问:造芯片真的那么难吗?

造芯片到底是难还是不难?这个问题比较复杂,涉及的因素很多,很难用一两句话讲清楚。不过,这并不妨碍我们从技术上了解“造芯片到底是怎么回事”。尽管现在已经有很多介绍芯片制造的文章,但许多都是大而化之,看完仍然一头雾水,有几个问题一直得不到解决。最近我仔细读了点芯片制造相关的资料,终于找到了这几个问题的答案。

问题一:晶圆为什么要是圆形的?

这张照片相信大家都不陌生,它展示的是晶圆,也就是芯片制造的基础原料。各种资料都介绍说,把晶圆切割,经过光刻加工,最后得到芯片。

iaAfUbA.jpg!mobile

但是等一等,仔细想想我们见过的芯片成品,几乎都是方形的,很少有圆形的。那么,为何要把圆形的晶圆切割成一个个方形?把晶圆做成方形的,不是能减少边边角角的浪费吗(尽管这样一来,它就不能再叫晶“圆”)?

要解答这个问题,得从晶圆的制造开始。

芯片制造的晶圆,主要成分是硅,所以也称为“硅晶圆”。这里说的“主要成分”,指的是硅的含量达到极高的比例,比如“十一个九”,也就是99.999999999%。二氧化硅与焦炭混合加热,可以得到纯度为98%左右的粗硅,再经过盐酸氯化和蒸馏,就可以得到高纯度的多晶硅。

注意,这个时候得到的还只是多晶硅,它的晶体框架结构是无序的。多晶硅可以用于光伏产业(太阳能发电),但不能用于芯片制造。原因在于,芯片制造需要稳定的晶体框架结构,每个部分的电学特性都必须相同,然后才方便加工。所以,还需要有办法把多晶硅转换为单晶硅。目前,半导体行业常用的办法是柴可拉斯基法(Czochralski process)。

按照柴可拉斯基法,先在坩锅中把多晶硅加热到熔融状态,然后加入“晶种”(通常是一小块单晶硅),此时晶体就会“生长”,围绕晶种得到越来越大的单晶硅晶体,也就是“晶棒”。不断旋转晶棒并向上提拉,同时坩锅以反方向旋转——当然,坩锅转速、晶棒转速、提拉速度、坩锅温度都需要极为精确的控制,最后可以得到一根较大的、圆柱体形状的硅晶棒。

IV36N3J.png!mobile

R3UziyA.jpg!mobile

上图:柴可拉斯基法加工过程。下图:晶棒成品(左端为晶种)。来源:维基百科

把这根晶棒按横截面切成薄片,就得到了晶圆。因此 ,晶圆就是圆形的。

问题二:EUV光刻的难点在哪里?

有不少文章都提到了,最新的ASML光刻机采用EUV(Extreme Ultraviolet,极紫外线)对晶圆进行光刻,原理类似幻灯片投影,台积电就是借助这种工艺完成了7nm甚至5nm芯片的生产。而Intel棋差一步,仍然停留在DUV(Deep Ultravi,深紫外线)的工艺,所以迟迟不能挺进10nm芯片的生产。

那么,EUV难在哪里,为何强如Intel也不得其门而入呢?

实话说,我不知道为什么Intel没有攻克,但了解EUV的工艺之后,我必须承认这真的很难。

EUV,也就是“极紫外线”,波长为13.5纳米(可见光中波长最短的紫光,波长约为380-450纳米)。要发出这种光线,比较好的办法是借助等离子体(Plasma)——一种气态的熔融金属。在2000年前后,业界比较看好的是采用放电等离子体光源。不过,最后圣迭戈的Cymer公司的办法胜出,也就是采用二氧化碳激光照射直径为30微米的锡颗粒。2007年的时候,Cymer的光源还只能提供30瓦的不稳定功率,但到了2014年,已经可以稳定输出250瓦的功率,这样基于EUV的大规模生产制造才具备可行性。不过早在2012年,光刻机生产商ASML就已经收购了Cymer。

如今,在ASML光刻机内部,先把极高纯度的金属锡加热到熔化,再将其喷到真空之中。喷出的锡看起来好像一条线,其实是高速移动的,直径为30微米的锡珠(滴),产生的速度是每秒钟5万颗。 然后,先用激光照射这些锡珠 (滴) ,使其变为粉饼状,产生更大的表面积。再以高功率的二氧化碳激光照射这些粉饼,这样,就得到了高热 等离子体 ,放射出极紫外线。

要补充的是,这个过程中,小的锡珠(滴)也可能组合成大的碎片,所以必须及时用高压氢气将它吹除,否则它可能会凝固,影响生产。

虽然光刻机由ASML提供,但ASML更像方案集成商,并不会包打天下。比如极紫外线光源,ASML自己负责提供喷出锡珠(滴)的设备,整体方案来自位于德国Ditzingen的TRUMPF公司,它也是这一领域的唯一供应商。该公司的方案 能持续产生40千瓦功率的二氧化碳激光,最终得到200瓦的极紫外线用于真正的 光刻 ,但整套系统的功率高达1000千瓦,其中大部分都用于散热。

极紫外线的产生过程(片段)。来源:TRUMPF官网

在2017年的一次采访中,在TRUMPF担任CTO的Peter Leibinger说:“如果我们失败了,摩尔定律也就失效了。当然,离开了TRUMPF世界仍然会转,但是没有它,芯片行业就要停摆。”

Ev6JJ3y.png!mobile

TRUMPF的CTO,Peter Leibinger,身后就是产生极紫外光的设备。来源:TRUMPF官网

回头来说ASML,到目前虽然得到了极紫外线,但它是向四周散射的,还必须又办法把它们收集汇聚到一起,才可以对晶圆进行 光刻 。要汇聚光线,改变光线的方向,大家通常想到的就是各种镜片。但是,这些装置对可见光有效,但是对极紫外线无效。极紫外线只能在真空传播,而且无法被镜头聚焦。要控制极紫外光,只能借助于布拉格反射器。

布拉格反射器,全称是Distributed Bragg Reflector(分布式布拉格反射器),也简写做DBR,是由多层反射介质(也称为“反射单元”)构成的设备(注意,这里的“布拉格(Bragg)”与捷克首都“布拉格(Prague)”不是同一个单词)。

它的原理其实并不复杂,光线在经过特殊设计的反射介质时,如果其波长恰好为1/4波长,那么介质的两面反射光恰好相差1/2波长,则发生相消干涉,实际上增强了反射光。通过设计不同反射介质的组合,可以单独加强针对某一波段的光线的反射率。如果介质的层数很多,而且反射波长变化很小,那么对一个连续波段都有很强反射效果。照相机上的镀膜也是应用这种原理,减少某个特定波长的反射量,让更多光线抵达照相机的感光元件。

iaUfqy7.gif!mobile

布拉格反射器的工作原理。来源:维基百科

ASML光刻机中的布拉格反射器采用硅和钼作为主要原料,有超过40层介质层,每层的厚度只有不到4纳米(因为极紫外线的波长为13.5纳米)。通过精确控制介质的厚度和组合,原本四散射出的极紫外线就可以集合起来,汇聚为一束强的光线用于生产。

YzMBniJ.png!mobile

用布拉格反射器聚合极紫外线的示意图。来源:ASML

前面说过,ASML更像方案集成商,控制极紫外线的光学元件都来自蔡司半导体(Zeiss SMT)。Zeiss SMT的工艺堪称一绝,精度控制让人叹为观止。打个粗略的比方,虽然反射器的直径只有30厘米左右,但如果把它整体放大到整个云南省那么大,最厚的介质层也只有1毫米那么厚。可以说,这是宇宙中最平滑的表面。

为了安装这样精密的设备,对空气洁净度的要求也是极高的。在美国航空航天署组装詹姆斯·韦伯太空望远镜的无尘房间,其清洁度达到了CleanRoom ISO 7,也就是每立方米的空气中,大于0.5微米的微粒数量不得超过35.2万个。但是,ASML厂房的清洁度必须达到ISO 1,也就是说,每立方米空气中,小于0.1微米的微粒数量不得大于10个(大于该尺寸的微粒不得存在)。

vIN7re2.png!mobile

不同级别的CleanRoom标准。来源:维基百科

ZVf2Ybb.png!mobile

ASML的光刻机在装配过程中。来源:ASML

相比之下,普通人生活的正常环境,其“污染指数”是ISO 1的500万倍(注意:这个标准与我们日常说的PM2.5有所不同,PM2.5指数关心的是每立方米空气中微粒的总重量,而CleanRoom指数关心的是每立方米空气中微粒的数量)。

除了空气中的颗粒数量,温度和震动也是要精确控制的。YouTube上有一个“探访ASML无尘车间”的视频,其中提到,温度必须精确保持在摄氏21度,一旦出现任何偏差,都可能对精度造成影响。而且,ASML的厂房底下有1500根桩,每根长达23米,这样才能保证整个厂房绝对没有震动。

如果客户采购了ASML的光刻机,则生产时也必须提供同样的无尘环境。被拆成大块的光刻机用六架飞机分别运抵(因为光刻机太重了),在生产环境里重新组装、校准,保证运作精度与制造时完全相同,然后才可以开始进行光刻。

如今,工业级别的极紫外线光刻设备只有ASML一家可以提供,ASML、TRUMPF、蔡司三家已经深度捆绑,无论是人员还是资源都做到了深度协同,在TRUMPF担任CTO的Peter Leibinger甚至说“事实上就是一家公司”。2016年11月,ASML出资10亿欧元,购买了Zeiss SMT公司24.9%的股份,并承诺在2022年之前投入2.2亿欧元(后又增加5.4亿欧元),支持Zeiss SMT的研发。

据报道,目前三家公司还在研发下一代极紫外线技术,预计投入7亿欧元,其中就包括用于测试布拉格反射器的高真空工作室,保证其精度可以达到0.5纳米,这是人类历史上从未达到的精度。 

当然,造芯片的技术挑战其实还很多,远不止上面所说的这些。比如光刻胶,看起来“不起眼”,其实也是不可或缺的。三星半导体的实力也堪称强劲,但是去年日本厂商一度对三星停止供应光刻胶,差点导致三星的半导体生产停滞……

我想说的是,如果要鼓励造芯片,光靠“砸钱”和喊口号是绝对不够的。比较理想的办法,是鼓励更多的优秀人才进入这个领域。一方面,已经学成的人员应当得到足够的重视,得到足够的待遇(而不能一窝蜂都去搞互联网);另一方面,也应当大力展开科普教育(而不能只是故弄玄虚的“商业故事教育”),激发年轻人和后来者的兴趣,才能保证“后继有人”——我始终认为,兴趣才是志业最好的引导。

参考阅读

The Perfectionists: How Precision Engineers Created the Modern World, by Simon Winchester

bueqEja.jpg!mobile

如果喜欢本文,欢迎长按识别二维码订阅。


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK