23

如何理解单自由度系统振动

 3 years ago
source link: https://zhuanlan.zhihu.com/p/263045899
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
一、数学模型
二、自由振动
    2.1无阻尼自由度振动
    2.2有阻尼自由度振动
三、受迫振动
    3.1 无阻尼受迫振动(正弦激励)
    3.2 有阻尼受迫振动(正弦激励)
    3.3 有阻尼受迫振动(阶跃激励)
    3.4 有阻尼受迫振动(冲击响应)

一、数学模型

对于很多工程而言,动态特性是非常重要的考核指标,其本质就是两个变量及其关系: 位移 。对于对象可以简化成质点或者刚体的问题,这个问题其实伟大的牛爵士已经解决了,即牛顿第二定律:

equation?tex=m%5Cddot+x%3DF

equation?tex=m%5Cddot+x 对应的力我们称之为惯性力,实际工程上和位移相关的不仅仅有 惯性力 ,还有其它的力,比如和速度相关的(位移的导数) 阻尼力 ,以及和位移线性相关的 弹性力 ,同时包含惯性力、阻尼力和弹性力的模型就是我们常说的 单自由度弹簧振子 系统,具体数学模型如下:

v2-3c63e3763a9320e6d7327650896ca6a9_b.png

则根据力平衡方程,可以得到:

equation?tex=m%5Cddot%7Bx%7D%2Bc%5Cdot%7Bx%7D%2Bkx%3DF%28t%29

其中: equation?tex=m ——质量块质量; equation?tex=c ——阻尼系数; equation?tex=k ——弹簧刚度; equation?tex=x ——质量块位移; equation?tex=F ——外界施加力。

对上式两端进行拉普拉斯变换,可以的到:

equation?tex=%5Cleft%28+ms%5E2%2Bcs%2Bk+%5Cright%29X%28s%29%3DF%28s%29

即系统的传递函数为:

equation?tex=G%28s%29%3D%5Cfrac%7BX%28s%29%7D%7BF%28s%29%7D%3D%5Cfrac%7B1%7D%7Bms%5E2%2Bcs%2Bk%7D

从数学上看,这是一个典型的二阶系统,我们知道,绝大多数工程中系统都可以降阶为一阶系统和二阶系统的叠加,一阶系统非常简单,通过我们关注的和难解决的都是二阶分量对应的模态,因此理解如上单自由度弹簧振子模型(二阶系统)的响应特性非常重要。

从物理上看,对于单自由度系统而言,都可以简化为如上模型;当系统是更复杂的连续系统时,一般更关心一阶模态的振动(动态特性),这也可简化成单自由度振动,因此理解单自由度系统振动是理解其他一切振动的基础。

比如,对于飞机的飞行控制,其实就是将飞机的纵向运动降阶为两个二阶运动(长周期运动和短周期运动),进而加以控制,具体见下文:

https:// zhuanlan.zhihu.com/p/91 047110

单自由度系统的振动可以分成两大部分: 自由振动(无外力 equation?tex=F%28t%29%3D0受迫振动(有外力 equation?tex=F%28t%29%5Cne0

二、自由振动

equation?tex=F%5Cleft%28t%5Cright%29%3D0 时,称弹簧振子系统为自由振动,根据系统中阻尼的情况,自由振动又可分为 无阻尼 自由振动和 有阻尼 自由振动。为简单起见,先分析无阻尼自由振动。

2.1无阻尼自由振动

当系统为 无阻尼自由 振动时,对弹簧振子而言,其机械能是守恒的,振动的本质就是动能和势能之间的互相转换,系统做等幅振动。

此时,阻尼系数 equation?tex=c%3D0 ,带入振动方程有:

equation?tex=m%5Cddot%7Bx%7D%2Bkx%3D0

equation?tex=w_n%5E2%3D%5Cfrac%7Bk%7D%7Bm%7D

则振动方程可以改写为:

equation?tex=%5Cddot%7Bx%7D%2Bw_n%5E2x%3D0

这是一个典型的二阶微分方程,其通解形式为:

equation?tex=x%3Db_1cosw_nt%2Bb_2sinw_nt

或者写成更紧凑的形式:

equation?tex=x%3D+Asin%28w_nt%2B%5Cphi%29

设系统的初始条件为: equation?tex=t%3D0 时,有 equation?tex=x%280%29%3Dx_0equation?tex=%5Cdot%7Bx%7D%280%29+%3Dv_0 ,则带入微分方程的通解可以得到:

equation?tex=b_1%3Dx_0%EF%BC%8Cb_2%3Dv_0%2Fw_n

即方程的解为:

equation?tex=x%3Dx_0cosw_nt%2B%5Cfrac%7Bv_0%7D%7Bw_n%7Dsinw_nt

当通解写成指数形式时,可以得到:

equation?tex=A%3D%5Csqrt%7Bx_0%5E2%2B%5Cleft%28%5Cfrac%7Bv_0%7D%7Bw_n%7D%5Cright%29%5E2%7D

equation?tex=%5Cphi%3Darctan%5Cfrac%7Bw_nx_0%7D%7Bv_0%7D+

二阶线性振动微分方程的解释时间 equation?tex=t 的简谐函数,方程解中的 equation?tex=w_n 只决定于系统本身的参数 equation?tex=mequation?tex=k ,而与系统的初始条件无关,是系统本身的固有特性,称之为 固有频率 。方程解中的 equation?tex=A 称为振幅,是质量块偏离静平衡位置的最大距离, equation?tex=%5Cphi 称为初相位。

搭建仿真模型如下:

v2-2a13ba045be9fb70873d41617740b3c9_b.jpg
xi=0;%阻尼比为0
wn=1;%固有频率为1rad/s; 

m=1;%质量为1Kg;
k=m*wn^2;%刚度,N/m;
c=2*sqrt(m*k)*xi; %阻尼系数,N/(m/s)
F0=0; %正弦激励振幅,m;
w=0.5;%正弦激励频率,rad/s; 

v0=1; %初始速度,m/s;
x0=2; %初始位移,m;

仿真波形如下:

v2-742589a3403d325e06fbdf76027a0b89_b.jpg

可见,对于无阻尼自由振动,当有初始速度/位移时,系统做 等幅振动

2.2有阻尼自由振动

无阻尼系统振动过程中能量守恒,振幅保持不变。而实际情况并非如此,必须考虑阻力对振动过程的影响。

实际阻力的形式很多,有滑动表面的阻力、空气等流体阻力、弹性材料的内摩擦阻力等,因此阻力的大小变化规律等也各不相同。

当系统为 有阻尼自由 振动时,对弹簧振子而言,就是机械能不断转化为热能的过程,振动的本质就是动能和势能之间的互相转换,并最终都转换为热能,因此振动的幅值是逐渐减小的。

此时振动方程为:

equation?tex=m%5Cddot%7Bx%7D%2Bc%5Cdot%7Bx%7D%2Bkx%3D0

假设阻尼比为:

equation?tex=%5Cxi%3D%5Cfrac%7Bc%7D%7B2%5Csqrt%7Bmk%7D%7D

则振动方程可改写为:

equation?tex=%5Cddot%7Bx%7D%2B2%5Cxi+w_n%5Cdot%7Bx%7D%7B%2Bw%7D_n%5E2x%3D0

令其解为:

equation?tex=x%3D%7B%5Crm+Ce%7D%5E%7Bst%7D

带入到振动方程,可以得到:

equation?tex=s%5E2%2B2%5Cxi+w_ns%2Bw_n%5E2%3D0

此特征方程的两个根是:

equation?tex=s_%7B1%2C2%7D%3D%5Cleft%28-%5Cxi%5Cpm%5Csqrt%7B%5Cxi%5E2-1%7D%5Cright%29w_n

不同的阻尼比,对应的解的形式不同,运动性质也不同。

a) equation?tex=%5Cxi%3E1(过阻尼)

此时特征方程有两个不同的实根,通解为:

equation?tex=x%5Cleft%28t%5Cright%29%3D%7B%5Crm+Be%7D%5E%7B%5Cleft%28-%5Cxi%2B%5Csqrt%7B%5Cxi%5E2-1%7D%5Cright%29w_nt%7D%2B%7B%5Crm+De%7D%5E%7B%5Cleft%28-%5Cxi-%5Csqrt%7B%5Cxi%5E2-1%7D%5Cright%29w_nt%7D

给出初始条件: equation?tex=t%3D0 时, equation?tex=x%280%29%3Dx_0%EF%BC%8C%5Cdot+x%280%29+%3Dv_0 则可以确定系数和分别为:

equation?tex=B%3D%5Cfrac%7Bv_0%2B%5Cleft%28%5Cxi%2B%5Csqrt%7B%5Cxi%5E2-1%7D%5Cright%29w_nx_0%7D%7B2w_n%5Csqrt%7B%5Cxi%5E2-1%7D%7D

equation?tex=D%3D%5Cfrac%7B%7B-v%7D_0-%5Cleft%28%5Cxi-%5Csqrt%7B%5Cxi%5E2-1%7D%5Cright%29w_nx_0%7D%7B2w_n%5Csqrt%7B%5Cxi%5E2-1%7D%7D

这种情况对应的运动时一种衰减运动,但不是我们关心的振动形式。设 equation?tex=x_0%3E0%2Cv_0%3E0 ,则运动图形大致如下:

v2-a491126675c4101aa9664387b0a30c9d_b.jpg
%%
xi=1.3;wn=2;
m=1;k=m*wn^2;c=2*sqrt(m*k)*xi;F0=0;w=0.5;
v0=1;x0=2;

b) equation?tex=%5Cxi%3D1(临界阻尼)

此时特征方程有重根,通解为:

equation?tex=x%5Cleft%28t%5Cright%29%3D%5Cleft%28B%2BDt%5Cright%29e%5E%7B-w_nt%7D

利用初始条件确定常数为:

equation?tex=B%3Dx_0%2C%5C+D%3Dv_0%2Bw_nx_0

此时的阻尼系数成为临界阻尼系数,记为,数值为:

equation?tex=C_c%3D2mw_n%3D2%5Csqrt%7Bmk%7D

临界阻尼情况也是一种非振动形式的衰减运动,按不同的初始条件,其运动图形如下:

v2-3d9f8ccbac4e72358e4ba16720897792_b.jpg
%%
xi=1.0;wn=2;
m=1;k=m*wn^2;c=2*sqrt(m*k)*xi;F0=0;w=0.5;
v0=1;x0=2;

c) equation?tex=0%3C%5Cxi%3C1(欠阻尼)

此时特征方程有一对共轭复根,通解为:

equation?tex=x%5Cleft%28t%5Cright%29%3De%5E%7B-%5Cxi+w_nt%7D%5Cleft%28Bcos%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt%2BDsin%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt%5Cright%29

或者写成跟紧凑的指数形式:

equation?tex=x%5Cleft%28t%5Cright%29%3DAe%5E%7B-%5Cxi+w_nt%7Dsin%5Cleft%28%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt%2B%5Cphi%5Cright%29

利用初始条件,确定出常数为:

equation?tex=B%3Dx_0

equation?tex=D%3D%5Cfrac%7Bv_0%2B%5Cxi+w_nx_0%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7Dw_n%7D

指数形式的常数为:

equation?tex=A%3D%5Csqrt%7Bx_0%5E2%2B%5Cleft%28%5Cfrac%7Bv_0%2B%5Cxi+w_nx_0%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7Dw_n%7D%5Cright%29%5E2%7D

equation?tex=%5Cphi%3Darctan%5Cfrac%7Bx_0%5Csqrt%7B1-%5Cxi%5E2%7Dw_n%7D%7Bv_0%2B%5Cxi+w_nx_0%7D

解中有两个因子,一个是衰减的指数函数 equation?tex=Ae%5E%7B-%5Cxi+w_nt%7D ,它将使振幅越来越小,直至振动最终消失;另一个因子是正弦函数 equation?tex=sin%5Cleft%28%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt%2B%5Cphi%5Cright%29 ,它表示系统以相同的周期通过平衡位置。因此,系统总的呈现形式为一种衰减的等周期振动。

v2-69f06f1218fd5b27ff8b62cef1e9bb3f_b.jpg
%%
xi=0.3;wn=2;
m=1;k=m*wn^2;c=2*sqrt(m*k)*xi;F0=0;w=0.5;
v0=1;x0=2;
v2-63d2421d19d332d24cc6519856056e33_b.jpg

振幅衰减的快慢可以用相邻振幅的比值来表示,称之为衰减率,也可以用衰减率的自然对数来表示,称之为对数衰减率。

根据前面给出的解:

equation?tex=x%5Cleft%28t%5Cright%29%3DAe%5E%7B-%5Cxi+w_nt%7Dsin%5Cleft%28%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt%2B%5Cphi%5Cright%29

令:

equation?tex=w_d%3D%5Csqrt%7B1-%5Cxi%5E2%7Dw_n

equation?tex=w_d 称之为 有阻尼固有频率 ,其对应的周期为:

equation?tex=T_d%3D%5Cfrac%7B2%5Cpi%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7Dw_n%7D

这样可以得到相邻周期幅值的 衰减率 为:

equation?tex=%5Ceta%3D%5Cfrac%7Bx_i%7D%7Bx_%7Bi%2B1%7D%7D%3D%5Cfrac%7BAe%5E%7B-%5Cxi+w_nt%7D%7D%7Be%5E%7B-%5Cxi+w_n%28t%2BT_d%29%7D%7D%3De%5E%7B%5Cxi+w_nT_d%7D

对数衰减率为:

equation?tex=%5Cdelta%3Dln%5Ceta%3Dw_n%5Cxi+T_d%3D%5Cfrac%7B2%5Cpi%5Cxi%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7D

同理,任意两个相邻的周期之间幅值的衰减率是固定的,有:

equation?tex=%5Ceta%3D%5Cfrac%7Bx_0%7D%7Bx_1%7D%3D%5Cfrac%7Bx_1%7D%7Bx_2%7D%3D%5Cldots%3D%5Cfrac%7Bx_%7Bn-1%7D%7D%7Bx_n%7D

则有:

equation?tex=%5Ceta%5En%3D%5Cfrac%7Bx_0%7D%7Bx_1%7D%5Ccdot%5Cfrac%7Bx_1%7D%7Bx_2%7D%5Ccdots%5Cfrac%7Bx_%7Bn-1%7D%7D%7Bx_n%7D%3D%5Cfrac%7Bx_0%7D%7Bx_n%7D

所以有:

equation?tex=nln%5Ceta%3Dn%5Cdelta%3Dln%5Cleft%28%5Cfrac%7Bx_0%7D%7Bx_n%7D%5Cright%29

可以得到:

equation?tex=%5Cdelta%3D%5Cfrac%7B1%7D%7Bn%7Dln%5Cleft%28%5Cfrac%7Bx_0%7D%7Bx_n%7D%5Cright%29

即:

equation?tex=%5Cfrac%7B2%5Cpi%5Cxi%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7D%3D%5Cfrac%7B1%7D%7Bn%7Dln%5Cleft%28%5Cfrac%7Bx_0%7D%7Bx_n%7D%5Cright%29

这样就可以根据幅值衰减率反算出系统的阻尼器比。

v2-1877e25e1cd260209eda04484ff5e0fa_b.jpg

比如在上图中,相邻两个波谷处的幅值衰减率为 equation?tex=%5Ceta%3D%5Cfrac%7B0.7655%7D%7B0.1061%7D%3D7.21 ,对应的对数衰减率为: equation?tex=%5Csigma%3Dln%5Ceta%3D1.976 ,可以就可以反算出系统的阻尼比为:

equation?tex=%5Cxi%3D%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7B%5Csigma%5E2%2B4%5Cpi%5E2%7D%7D%3D0.3

与之前的仿真时设置的阻尼比是完全一致的。

三、受迫振动

系统在外部激励下的振动称之为受迫振动或者强迫振动。自由振动只是系统对初始扰动(初始条件)的响应。由于阻尼的存在,振动现象很快消失,要使振动持续进行,必须有外界的激励输入给系统以补充阻尼消耗的能量。

3.1 无阻尼受迫振动(正弦激励)

无阻尼受迫振动的本质是系统内部的机械能(动能、势能之和)和外界做功的能量互相转换,同时系统内部的动能和势能之间也互相转换,可见整个过程是比较复杂的。

此时振动微分方程为:

equation?tex=%5Cddot%7Bx%7D%7B%2Bw%7D_n%5E2x%3D%5Cfrac%7BF_0%7D%7Bm%7Dsinwt

无阻尼受迫振动的通解的形式前面已经给出,

equation?tex=x_f%3DA_1cosw_nt%2BA_2sinw_nt

假设其特解为:

equation?tex=x_p%3DX_0%5Csin%7Bwt%7D

则有:

equation?tex=x%3DA_1cosw_nt%2BA_2sinw_nt%2BX_0%5Csin%7Bwt%7D

给出初始条件: equation?tex=t%3D0equation?tex=x%280%29%3Dx_0%EF%BC%8C%5Cdot+x%280%29+%3Dv_0 ,则可以确定系数和分别为:

equation?tex=A_1%3Dx_0

equation?tex=A_2%3D%5Cfrac%7Bv_0-X_0w%7D%7Bw_n%7D

同时可以得到:

equation?tex=X_0%3D%5Cfrac%7BF_0%7D%7Bm%5Cleft%28w_n%5E2-w%5E2%5Cright%29%7D

假设:

equation?tex=%5Clambda%3D%5Cfrac%7Bw%7D%7Bw_n%7D%2C%5C+%5C+%5C+%5C+%5C+%5C+B%3D%5Cfrac%7BF_0%7D%7Bk%7D

则有:

equation?tex=X_0%3D%5Cfrac%7BBw_n%5E2%7D%7Bw_n%5E2-w%5E2%7D%3D%5Cfrac%7BB%7D%7B1-%5Clambda%5E2%7D

equation?tex=A_1%3Dx_0

equation?tex=A_2%3D%5Cfrac%7Bv_0%7D%7Bw_n%7D-%5Cfrac%7BB%5Clambda%7D%7B1-%5Clambda%5E2%7D

所以可以得到无阻尼受迫振动的解为:

equation?tex=x%3D%5Cunderbrace%7Bx_0cosw_nt%2B%5Cfrac%7Bv_0%7D%7Bw_n%7Dsinw_nt%7D_%7B%E5%88%9D%E5%A7%8B%E6%9D%A1%E4%BB%B6%E5%93%8D%E5%BA%94%7D%5Cunderbrace%7B-%5Cfrac%7BB%5Clambda%7D%7B1-%5Clambda%5E2%7Dsinw_nt%7D_%7B%E8%87%AA%E6%9C%89%E4%BC%B4%E9%9A%8F%E6%8C%AF%E5%8A%A8%7D%2B%5Cunderbrace%7B%5Cfrac%7BB%7D%7B1-%5Clambda%5E2%7Dsinwt%7D_%7B%E5%BC%BA%E8%BF%AB%E5%93%8D%E5%BA%94%7D

可见,对于无阻尼受迫振动,振动的解分为三个部分:

  1. 与初始条件有关的 初始条件响应 ,和初始条件相关,以固有频率振动;
  2. 系统受到扰动后的 自由伴随振动 ,与初始条件无关,也是以固有频率振动;
  3. 强迫响应 ,振动频率为外界激励频率。

曲线响应如下:

v2-d0fbf6f6f8882c4fbccafd5bc784b09d_b.jpg

该曲线为两个正弦曲线的叠加,一个为固有频率1rad/s,一个为受迫频率1.5rad/s,具体参数如下表所示。

%%
xi=0;wn=1;
m=1;k=m*wn^2;c=2*sqrt(m*k)*xi;F0=10;w=1.5;
v0=1;x0=2;

若激励频率与固有频率十分接近,即:

equation?tex=%5Clambda%3D%5Cfrac%7Bw%7D%7Bw_n%7D%5Capprox1

则会出现所谓的 “拍振” 现象。不妨假设:

equation?tex=%5Clambda%3D1%2B2%5Cvarepsilon

其中 equation?tex=%5Cvarepsilon 为一个小量。

假设系统为零初始条件,即 equation?tex=x%280%29+%3D0%EF%BC%8C%5Cdot+x%280%29+%3D0 ,则系统的解可以简化为:

equation?tex=x%3D-%5Cfrac%7BB%5Clambda%7D%7B1-%5Clambda%5E2%7Dsinw_nt%2B%5Cfrac%7BB%7D%7B1-%5Clambda%5E2%7D%5Csin%7Bwt%3D%7D%5Cfrac%7BB%7D%7B1-%5Clambda%5E2%7D%5Cleft%28%5Csin%7Bwt%7D-%5Clambda+sinw_nt%5Cright%29

equation?tex=+%5Clambda%3D1%2B2%5Cvarepsilon 带入可以得到:

equation?tex=x%3D%5Cfrac%7BB%7D%7B1-%5Clambda%5E2%7D%5Cleft%28%5Csin%7Bwt%7D-%5Clambda+sinw_nt%5Cright%29%3D%5Cfrac%7BB%7D%7B1-%5Cleft%284%5Cvarepsilon%5E2%2B4%5Cvarepsilon%2B1%5Cright%29%7D%5Cleft%28%5Csin%7Bwt%7D-%5Clambda+sinw_nt%5Cright%29

忽略 equation?tex=%5Cvarepsilon%5E2 小量,得到:

equation?tex=x%5Capprox-%5Cfrac%7BB%7D%7B4%5Cvarepsilon%7D%5Cleft%28%5Csin%7Bwt%7D-%5Clambda+sinw_nt%5Cright%29%5Capprox-%5Cfrac%7BB%7D%7B4%5Cvarepsilon%7D%5Cleft%28%5Csin%7B%5Cleft%281%2B2%5Cvarepsilon%5Cright%29w_nt%7D-sinw_nt%5Cright%29

根据三角函数和差化积,可以得到:

equation?tex=x%5Capprox-%5Cfrac%7BB%7D%7B4%5Cvarepsilon%7D%5Cleft%28%7B%5Crm+sinw%7D_nt%5Ccdot+cos2%5Cvarepsilon+w_nt%2Bcosw_nt%5Ccdot+sin2%5Cvarepsilon+w_nt-sinw_nt%5Cright%29

equation?tex=%5Cvarepsilon 比较小时,有 equation?tex=cos2%5Cvarepsilon+w_nt%5Capprox1 ,所以有:

equation?tex=x%5Capprox-%5Cfrac%7BB%7D%7B4%5Cvarepsilon%7Dcosw_nt%5Ccdot+sin2%5Cvarepsilon+w_nt%3D-%5Cfrac%7BB%7D%7B4%5Cvarepsilon%7Dcosw_nt%5Ccdot2%5Ccdot+sin%5Cvarepsilon+w_nt%5Ccdot+cos%5Cvarepsilon+w_nt

同上, equation?tex=cos%5Cvarepsilon+w_nt%5Capprox1 ,所以有:

equation?tex=x%5Capprox-%5Cfrac%7BB%7D%7B2%5Cvarepsilon%7Dsin%5Cvarepsilon+w_nt%5Ccdot+cosw_nt

可见,对于无阻尼受迫振动而言,当外界激励频率与系统固有频率接近时,系统响应可以看成是振动频率为 equation?tex=w_n ,振幅按 equation?tex=%5Cfrac%7BB%7D%7B2%5Cvarepsilon%7Dsin%5Cvarepsilon+w_nt 规律变换的振动,如下图所示:

v2-e460660250c780f4f90c1434b60f644b_b.jpg

这种在接近共振时发生的特殊的振动现象称为“拍”,这种振动称为“ 拍振 ”,“拍”的周期为 equation?tex=%5Cfrac%7B%5Cpi%7D%7B%5Cvarepsilon+w_n%7D ,图形的包络线为 equation?tex=%5Cpm%5Cfrac%7BB%7D%7B2%5Cvarepsilon%7Dsin%5Cvarepsilon+w_nt

%%
xi=0;wn=2;
 
m=1;k=m*wn^2;c=2*sqrt(m*k)*xi;F0=1;w=1.8;
 
v0=1;x0=2;

系统响应曲线如下:

v2-ed4a89f97fce9efeb7d017fc41c82a3a_b.jpg

equation?tex=%5Cvarepsilon%5Crightarrow0 时,有:

equation?tex=x%5Capprox-%5Cfrac%7BB%7D%7B2%5Cvarepsilon%7Dsin%5Cvarepsilon+w_nt%5Ccdot+cosw_nt%5Capprox-%5Cfrac%7BB%7D%7B2%5Cvarepsilon%7D%5Cvarepsilon%5Ccdot++w_nt%5Ccdot++cosw_nt%3D-%5Cfrac%7BB%7D%7B2%7Dw_nt%5Ccdot++cosw_nt

v2-bb15d026021e28858d899475520be179_b.jpg

3.2 有阻尼受迫振动(正弦激励)

有阻尼的受迫振动是最为复杂的单自由度振动,有阻尼受迫振动的本质是系统内部的机械能(动能、势能之和)和外界做功的能量互相转换,同时系统内部的动能和势能之间以及和热能之间也互相转换。

有阻尼受迫振动的响应分两部分, 稳态响应瞬态响应

我们先分析 稳态响应 (幅值响应和相位响应),再分析 瞬态响应 。先看稳态响应:

完整的微分方程如下:

equation?tex=%5Cddot%7Bx%7D%2B2%5Cxi+w_n%5Cdot%7Bx%7D%7B%2Bw%7D_n%5E2x%3D%5Cfrac%7BF_0%7D%7Bm%7Dsinwt

假设其 稳态解 为:

equation?tex=x_p%3DX_0%5Csin%7B%5Cleft%28wt-%5Cpsi%5Cright%29%7D

带入方程,可以得到系数幅值响应 equation?tex=X_0 和相位响应 equation?tex=%5Cpsi 分别为:

equation?tex=X_0%3D%5Cfrac%7BF_0%2Fk%7D%7B%5Csqrt%7B%5Cleft%281-%5Clambda%5E2%5Cright%29%5E2%2B%5Cleft%282%5Cxi%5Clambda%5Cright%29%5E2%7D%7D

equation?tex=%5Cpsi%3Darctan%5Cfrac%7B2%5Cxi%5Clambda%7D%7B1-%5Clambda%5E2%7D

其中:

equation?tex=%5Clambda%3D%5Cfrac%7Bw%7D%7Bw_n%7D

可见:

1)在简谐激励条件下,响应也是简谐的,响应频率与激振频率相同;

2)简谐激励强迫振动的振幅 equation?tex=X_0 和相位角 equation?tex=%5Cpsi 决定于系统本身的物理特性和激振力的大小于频率,与初始条件无关。

对于稳态响应,定义放大系数 equation?tex=%5Cbeta%28%5Clambda%29 为响应的振幅 equation?tex=X_0+ 与激振力 equation?tex=F_0 所引起的静位移比值:

equation?tex=%5Cbeta%28%5Clambda%29%3D%5Cfrac%7BX_0%7D%7BF_0%2Fk%7D%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B%5Cleft%281-%5Clambda%5E2%5Cright%29%5E2%2B%5Cleft%282%5Cxi%5Clambda%5Cright%29%5E2%7D%7D

equation?tex=%5Cxi 为参数,画出 equation?tex=%5Cbeta%28%5Clambda%29 曲线,即幅频特性曲线,表明了阻尼和激振频率对响应幅值的影响。

v2-781b842796984473ad894e862fe1111a_b.jpg

讨论:

1) equation?tex=%5Clambda%5Cll1 时,放大系数为:

equation?tex=%5Cbeta%28%5Clambda%29%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B%5Cleft%281-%5Clambda%5E2%5Cright%29%5E2%2B%5Cleft%282%5Cxi%5Clambda%5Cright%29%5E2%7D%7D%5Capprox1

即响应幅值近似等于激振力幅值所引起的静位移。

2) equation?tex=%5Clambda%5Cgg1 时,放大系数为:

equation?tex=%5Cbeta%28%5Clambda%29%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B%5Cleft%281-%5Clambda%5E2%5Cright%29%5E2%2B%5Cleft%282%5Cxi%5Clambda%5Cright%29%5E2%7D%7D%5Capprox%5Cfrac%7B1%7D%7B%5Clambda%5E2%7D%5Crightarrow0

即响应幅值近似等于0,高频下系统来不及响应。

3) equation?tex=%5Clambda%5Capprox1+ 时,

equation?tex=%5Cbeta%28%5Clambda%29%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B%5Cleft%281-%5Clambda%5E2%5Cright%29%5E2%2B%5Cleft%282%5Cxi%5Clambda%5Cright%29%5E2%7D%7D%5Crightarrow%5Cinfty

激振频率接近固有频率, equation?tex=%5Cbeta%28%5Clambda%29 迅速增大,振幅很大,这种现象称为共振。阻尼比越小,共振越厉害,因此了解系统的共振频率非常重要。

为求取共振频率,先对频率比微分:

equation?tex=%7B%5Cbeta%28%5Clambda%29%7D%5E%5Cprime%3D%5Cfrac%7B-2%5Clambda%7D%7B%5Csqrt%7B%5Cleft%28%5Cleft%281-%5Clambda%5E2%5Cright%29%5E2%2B%5Cleft%282%5Cxi%5Clambda%5Cright%29%5E2%5Cright%29%5E3%7D%7D%5Cleft%282%5Cxi%5E2-1%2B%5Clambda%5E2%5Cright%29

equation?tex=%7B%5Cbeta%28%5Clambda%29%7D%5E%5Cprime%3D0 ,可以得到:

equation?tex=%5Clambda%5E2%3D1-2%5Cxi%5E2

所以有:

equation?tex=w%3D%5Csqrt%7B1-2%5Cxi%5E2%7Dw_n

可以得到放大倍数为:

equation?tex=%7B%5Cbeta%28%5Clambda%29%7D_%7Bmax%7D%3D%5Cfrac%7B1%7D%7B2%5Cxi%5Csqrt%7B1-%5Cxi%5E2%7D%7D

可见对于有阻尼受迫振动而言,系统的响应不会是无穷大,是有限值 equation?tex=%5Cfrac%7B1%7D%7B2%5Cxi%5Csqrt%7B1-%5Cxi%5E2%7D%7D ,而响应最大的频率为 equation?tex=w%3D%5Csqrt%7B1-2%5Cxi%5E2%7Dw_n ,既不是无阻尼固有频率,也不是阻尼固有频率,这个我们一般的认识是有偏差的(激励频率为固有频率时响应最大)。也就是说,只有在阻尼比为零时,我们所说激励频率为固有频率时(无论是无阻尼固有频率还是有阻尼固有频率),系统共振(响应最大)才成立,此时, equation?tex=%5Comega%3D%5Comega_n%3D%5Comega_d

实际工程上,系统自身的阻尼比一般都不太大,此时在固有频率处( equation?tex=+%5Clambda%3D1 )的放大倍数为:

equation?tex=%5Cbeta%28%5Clambda%29%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B%5Cleft%281-%5Clambda%5E2%5Cright%29%5E2%2B%5Cleft%282%5Cxi%5Clambda%5Cright%29%5E2%7D%7D%3D%5Cfrac%7B1%7D%7B2%5Cxi%7D

可见,当阻尼比 equation?tex=%5Cxi+ 很小时, equation?tex=%5Cbeta%28%5Clambda%29equation?tex=%7B%5Cbeta%28%5Clambda%29%7D_%7Bmax%7D 相差很小,所以在工程中仍认为 equation?tex=w%3Dw_n 时发生共振。

前面介绍了幅值响应,现在看一下相位响应。

equation?tex=%5Cpsi%3Darctan%5Cfrac%7B2%5Cxi%5Clambda%7D%7B1-%5Clambda%5E2%7D

v2-e6857225c0a2795ecf4e07f3e86402ac_b.jpg

讨论:

1) equation?tex=%5Clambda%5Cll1 时,相位差为:

equation?tex=%5Cpsi%3Darctan%5Cfrac%7B2%5Cxi%5Clambda%7D%7B1-%5Clambda%5E2%7D%5Capprox0

位移与激振力在相位上几乎相同。

2) equation?tex=%5Clambda%5Cgg1 时,相位差为:

equation?tex=%5Cpsi%3Darctan%5Cfrac%7B2%5Cxi%5Clambda%7D%7B1-%5Clambda%5E2%7D%5Capprox%5Cpi

位移与激振力反相;

3) equation?tex=%5Clambda%5Capprox1 时,

equation?tex=%5Cpsi%3Darctan%5Cfrac%7B2%5Cxi%5Clambda%7D%7B1-%5Clambda%5E2%7D%5Capprox%5Cpi%2F2

共振时的相位差为 equation?tex=%5Cpi%2F2 ,与阻尼无关。

对于 equation?tex=%5Cxi%3D0 ,随着 equation?tex=%5Clambda 的变化,相位响应在 equation?tex=%5Clambda%3D1 处有突变,从 equation?tex=%5Cpsi%3D0 调到 equation?tex=%5Clambda%3E1 时的 equation?tex=%5Clambda%3E1

前面介绍了 稳态响应 ,现在看一下 瞬态响应 。完整的振动方程为:

equation?tex=%5Cddot%7Bx%7D%2B2%5Cxi+w_n%5Cdot%7Bx%7D%7B%2Bw%7D_n%5E2x%3D%5Cfrac%7BF_0%7D%7Bm%7Dsinwt

方程的完整解为瞬态部分和稳态部分的叠加,即:

equation?tex=x%5Cleft%28t%5Cright%29%3De%5E%7B-%5Cxi+w_nt%7D%5Cleft%28A_1cos%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt%2BA_2sin%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt%5Cright%29%2BX_0%5Csin%28wt-%5Cpsi%29

初始条件为: equation?tex=t%3D0equation?tex=%5C+x%5Cleft%280%5Cright%29%3Dx_0%EF%BC%8C%5Cdot+x%280%29%3Dv_0 ,带入振动方程可以得到:

equation?tex=A_1%3Dx_0%2BX_0sin%5Cpsi

equation?tex=A_2%3D%5Cfrac%7Bv_0%7D%7Bw_d%7D%2B%5Cfrac%7B%5Cxi+w_n%7D%7Bw_d%7D%5Cleft%28x_0%2BX_0sin%5Cpsi%5Cright%29-%5Cfrac%7BX_0w%7D%7Bw_d%7Dcos%5Cpsi

所以线性有阻尼振动在正弦激励作用下的响应最终表示为:

equation?tex=x%3D%5Coverbrace%7Be%5E%7B-%5Cxi+w_nt%7D%5Cbigg%28x_0cosw_nt%2B%5Cfrac%7Bv_0%7D%7Bw_n%7Dsinw_nt%5Cbigg%29%7D%5E%7B%E5%88%9D%E5%A7%8B%E6%9D%A1%E4%BB%B6%E5%93%8D%E5%BA%94%7D%5C%5C+%5Cunderbrace%7BX_0e%5E%7B-%5Cxi+w_nt%7D%5Cbigg%28%5Cfrac%7B%5Cxi+w_nsin%5Cphi-wcos%5Cphi%7D%7Bw_d%7Dsinw_dt%2Bsin%5Cphi+cosw_dt%5Cbigg%29%7D_%7B%E8%87%AA%E6%9C%89%E4%BC%B4%E9%9A%8F%E6%8C%AF%E5%8A%A8%7D+%5C%5C%2B%5Cunderbrace%7B%5Cfrac%7BB%7D%7B1-%5Clambda%5E2%7Dsin%28wt-%5Cphi%29%7D_%7B%E5%BC%BA%E8%BF%AB%E5%93%8D%E5%BA%94%7D

其中

equation?tex=X_0%3D%5Cfrac%7BF_0%2Fk%7D%7B%5Csqrt%7B%5Cleft%281-%5Clambda%5E2%5Cright%29%5E2%2B%5Cleft%282%5Cxi%5Clambda%5Cright%29%5E2%7D%7D

equation?tex=%5Cpsi%3Darctan%5Cfrac%7B2%5Cxi%5Clambda%7D%7B1-%5Clambda%5E2%7D

分别为稳态响应的幅值响应和相位响应。系统的全响应 equation?tex=x%5Cleft%28t%5Cright%29 和强迫响应 equation?tex=X_0%5Csin%28wt-%5Cpsi%29 示意图如下:

v2-ca7d8587306e5e5048ff9126e1ad0f24_b.jpg

3.3 有阻尼受迫振动(阶跃激励)

如果输入为单位阶跃信号,则振动方程为:

equation?tex=%5Cddot%7Bx%7D%2B2%5Cxi+w_n%5Cdot%7Bx%7D%7B%2Bw%7D_n%5E2x%3Dw_n%5E2%5Ccdot1%28t%29

由于实际工程中系统一般均为欠阻尼状态,故此仅分析 equation?tex=0%3C%5Cxi%3C1 情况。同之前一致,方程的完整解为瞬态部分和稳态部分的叠加。忽略动态项,可以获得稳态时方程为:

equation?tex=w_n%5E2x%3Dw_n%5E2

稳态解为:

equation?tex=x_%5Cinfty%3D1

阶跃信号激励下的完整解为:

equation?tex=x%5Cleft%28t%5Cright%29%3De%5E%7B-%5Cxi+w_nt%7D%5Cleft%28A_1cos%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt%2BA_2sin%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt%5Cright%29%2B1

初始条件为: equation?tex=t%3D0equation?tex=%5C+x%5Cleft%280%5Cright%29%3Dx_0%EF%BC%8C%5Cdot+x%280%29%3Dv_0 ,带入振动方程可以得到:

equation?tex=A_1%3Dx_0-1

equation?tex=A_2%3D%5Cfrac%7Bv_0%2B%5Cxi+w_n%5Cleft%28x_0-1%5Cright%29%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7Dw_n%7D

绝大部分情况下,我们只研究零状态响应,此时 equation?tex=x%5Cleft%280%5Cright%29%3D0%EF%BC%8C%5Cdot+x%280%29%3D0 ,这样得到:

equation?tex=A_1%3D-1%EF%BC%8CA_2%3D%5Cfrac%7B-%5Cxi%7D+%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7D

则方程的解为:

equation?tex=x%5Cleft%28t%5Cright%29%3De%5E%7B-%5Cxi+w_nt%7D%5Cleft%28-cos%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt-%5Cfrac%7B%5Cxi%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7Dsin%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt%5Cright%29%2B1+%5C%5C%3D%5Cfrac%7Be%5E%7B-%5Cxi+w_nt%7D%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7D%5Cleft%28-%5Csqrt%7B1-%5Cxi%5E2%7Dcos%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt-%5Cxi+sin%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt%5Cright%29%2B1+%5C%5C%3D-%5Cfrac%7Be%5E%7B-%5Cxi+w_nt%7D%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7Dsin%5Cleft%28%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt%2B%5Cbeta%5Cright%29%2B1

其中

equation?tex=%5Cbeta%3Darctan%5Cfrac%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7D%7B%5Cxi%7D

几个关键的指标量:

1)峰值时间 equation?tex=t_p

v2-a0e20a42f1ec08ef087ffc7c0cbe3688_b.jpg

系统瞬态振动波峰对应的时间为:

equation?tex=t%3D%5Cfrac%7Bn%5Ccdot%5Cpi%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7Dw_n%7D

equation?tex=n%3D1+ 时,对应的时间称之为峰值时间,此时:

equation?tex=t_p%3D%5Cfrac%7B%5Cpi%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7Dw_n%7D

2)超调量 equation?tex=%5Csigma+%5C%25

峰值超过稳态值的比例称为超调量,计算如下:

equation?tex=x%5Cleft%28t_p%5Cright%29%3D-%5Cfrac%7Be%5E%7B-%5Cxi+w_nt_p%7D%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7Dsin%5Cleft%28%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt_p%2B%5Cbeta%5Cright%29%2B1+%5C%5C%3D-%5Cfrac%7Be%5E%5Cfrac%7B-%5Cxi%5Cpi%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7D%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7Dsin%5Cleft%28%5Cpi%2B%5Cbeta%5Cright%29%2B1+%3De%5E%5Cfrac%7B-%5Cxi%5Cpi%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7D%2B1

equation?tex=%5Csigma+%5C%25%3D%5Cfrac%7Bx%5Cleft%28t_p%5Cright%29-x%5Cleft%28%5Cinfty%5Cright%29%7D%7Bx%5Cleft%28%5Cinfty%5Cright%29%7D%5Ctimes100%25%3De%5E%5Cfrac%7B-%5Cxi%5Cpi%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7D%5Ctimes100+%5C%25+

超调量只跟阻尼比有关,随阻尼比的变化情况如下图所示:

v2-4afb7a87b645c23db0962d6f39f34199_b.jpg

3) 调节时间

响应幅值与稳态值只差比例在0.05以内时对应的时间称为调节时间。

调节时间计算如下:

equation?tex=%5Cleft%7C1%2B%5Cfrac%7Be%5E%7B-%5Cxi+w_nt%7D%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7D-1%5Cright%7C%3D%5Cfrac%7Be%5E%7B-%5Cxi+w_nt%7D%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7D%3D0.05%2C%5C+%5C+%5C+%5C+%5C+%5CDelta%5C%25%3D5%5C%25

equation?tex=t_s%3D-%5Cfrac%7Bln0.05%2B%5Cfrac%7B1%7D%7B2%7D%5Cln%7B%5Cleft%281-%5Cxi%5E2%5Cright%29%7D%7D%7B%5Cxi+w_n%7D%5Capprox%5Cfrac%7B3.5%7D%7B%5Cxi+w_n%7D%5C+%5C+%5C+%280.3%3C%5Cxi%3C0.8%29

v2-34fc85d02d2f4c41faa14f4a8d9d183b_b.jpg

3.4 有阻尼受迫振动(冲击响应)

单位冲击响应的微分方程为:

equation?tex=%5Cddot%7Bx%7D%2B2%5Cxi+w_n%5Cdot%7Bx%7D%7B%2Bw%7D_n%5E2x%3Dw_n%5E2%5Ccdot%5Cdelta%28t%29

由于单位冲击函数是单位阶跃函数的导数,故其时域响应也可以认为是单位阶跃响应的导数(零状态下),即:

equation?tex=x%5E%5Cprime%5Cleft%28t%5Cright%29%3D%5Cxi+w_n%5Ccdot%5Cfrac%7Be%5E%7B-%5Cxi+w_nt%7D%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7Dsin%5Cleft%28%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt%2B%5Cbeta%5Cright%29-%5Csqrt%7B1-%5Cxi%5E2%7Dw_n%5Ccdot%5Cfrac%7Be%5E%7B-%5Cxi+w_nt%7D%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7Dcos%5Cleft%28%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt%2B%5Cbeta%5Cright%29%5C%5C+%3D%5Cfrac%7Bw_ne%5E%7B-%5Cxi+w_nt%7D%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7D%5Cleft%28%5Cxi%5Ccdot+sin%5Cleft%28%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt%2B%5Cbeta%5Cright%29-%5Csqrt%7B1-%5Cxi%5E2%7D%5Ccdot+tcos%5Cleft%28%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt%2B%5Cbeta%5Cright%29%5Cright%29%5C%5C%3D%5Cfrac%7Bw_ne%5E%7B-%5Cxi+w_nt%7D%7D%7B%5Csqrt%7B1-%5Cxi%5E2%7D%7D%5Csqrt%7B1-%5Cxi%5E2%7Dw_nt

不同阻尼比下欠阻尼二阶系统的冲击响应曲线如下图所示。


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK