31

从每秒6000写请求谈起

 4 years ago
source link: https://studygolang.com/articles/30553
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

AzayMbU.png!mobile

背景

每一个片子的幕后,都保留了你的观看记录,详细的记着你观看了几次,跳过了那些时长 ,据说根据这些数据可以分析出你喜欢哪个日本明星,以此来做定向推送......

虽然看起来很简单的一个功能,其实涉及到的数据量非常大,极限情况下为你的用户数*视频数的乘积。

那么在只有两个网站服务器,一台sqlserver的情况下,该如何面对这样不算大数据量的写请求呢?为什么说是写请求呢?因为用户观看视频的每一秒你都需要记录下来,例如:视频的第十秒用户观看了。要想把这个功能搞定,首先需要定义几个事情:

  1. 记录用户观看视频情况的数据定义
  2. 和客户端交互的数据协议
  3. 数据库中记录的数据格式
  4. 如何解决服务器写的压力(毕竟单台服务器请求数还是比较大)

解决方案

用户观看视频进度定义

对于一个视频来说,假如有1个小时的时长,这3600秒对应着3600个是否已经观看的状态,对于观看状态来说,只有观看和未观看两种状态,所以一个bit足以,一个字节(byte)有8个bit,所以一个byte可以表示8秒的观看状态,以此为基础,进制越高,同样数量的字符表示的状态就越多。

客户端每次上传新的数据,需要和服务端已经存在的数据做位运算,例如: 01000 表示第二秒观看了 ,客户端新上传:00011 表示第4,5秒都观看了,对于用户而言这个视频第2,4,5 秒都看过,虽然只是一个简单的运算,但是量大的时候,对cpu的消耗不容小觑。

第一字节    第二字节
  0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7 
bit:  1 0 0 0 1 0 0 0  0 1 0 0 0 0 0 0
二进制:  0x88    0x40
字符串:  8840

和客户端交互协议

用户观看视频的进度实时信息,只有客户端知道,客户端需要上传用户的观看进度数据,和服务端交互的进制可以选择通用性比较强的16进制,当然你选择100进制也无所谓,只要双方能同时支持,并且能正常解析即可

数据库数据格式

每种数据库支持的数据类型有差异,所以这里不在过多叙述,当然无论什么格式,占用空间越少越好,但也要根据业务的计算量来综合考虑。

解决问题

cpu性能问题

毕竟要把用户每次最新的观看数据和老数据做合并工作,在用户量大的情况下不容小觑。在综合了各种条件之后,最终采用10进制来做合并工作,客户端上传上来16进制数据,然后转化为十进制,然后和观看记录(10进制)做合并运算,这部分cpu省略不了,具体转化程序为:

//需要新加的数据
        ConcurrentQueue<UserVideoInfo> AddQueue = new ConcurrentQueue<UserVideoInfo>();

//把16进制的字符串按照两位 分割成十进制数组
        protected List<int> ConvertToProgressArray(string progressString)
        {
            if (string.IsNullOrWhiteSpace(progressString))
            {
                return null;
            }
            //验证是否为2的倍数长度
            if (progressString.Length % 2 != 0)
            {
                return null;
            }
            var proStrSpan = progressString.AsSpan();
            List<int> ret = new List<int>();
          
            int i = 0;
            while (i < proStrSpan.Length)
            {
                ret.Add(int.Parse(proStrSpan.Slice(i, 2).ToString(), System.Globalization.NumberStyles.HexNumber)); ;
                i = i + 2;
            }
            return ret;
        }

客户端请求数量问题

如果同时一万用户在同时观看视频,上传数据时间间隔为2秒,意味着每秒有5000请求。由于这个业务只是一个用户log型业务,何为log型,就是说可以容忍一部分数据丢失,针对这个数据形态,客户端可以先在本地做缓冲记录,没有必要一秒上传一次记录,例如现在约定的客户端30秒上传一次记录,如果用户关掉客户端,下次启动的时候会重新上传未成功的记录。

数据库压力

如果每次请求都单独更新数据库,按照第二条的计算每秒高达5000次update请求。用户观看每次视频都加载内存中缓存,仔细分析这种业务,由于是log型数据,所以每次你请求没有必要都去更新数据库,而是先更新了缓存,然后定时去更新数据库。

由于数据量的问题,所有的更新操作都会发送到一个任务队列,队列的执行者会根据配置批量更新数据库,这样比单条更新数据库性能要高很多,其实这种方案在很多log型的业务中都有使用,批量更新对数据库的压力要小很多,代码类似以下

public async Task<int> AddUserVideoData(UserVideoInfo data, DBProcessEnum processType = DBProcessEnum.Update)
        {
            if(processType== DBProcessEnum.Add)
            {
                AddQueue.Enqueue(data);
            }
           
            return 1;
        }

 void MulProcessData()
        {
            //每次更新的条数
            int maxNumber = 50;
            List<UserVideoInfo> data = new List<UserVideoInfo>();
            while (true)
            {
                if (data == null)
                {
                    data = new List<UserVideoInfo>();
                }
                try
                {                   
                    if (!AddQueue.Any() && !UpdateQueue.Any())
                    {
                        System.Threading.Thread.Sleep(500);
                    }                   
                    else
                    {
                        //先处理 需要更新的
                        data.Clear();
                        while (data.Count <= maxNumber && AddQueue.Any())
                        {
                            if (!AddQueue.TryDequeue(out UserVideoInfo value))
                            {                                
                                continue;
                            }
                            //判断是否有重复对象
                            if (data.Any(s => s.UserId == value.UserId && s.VideoId == value.VideoId))
                            {
                                var exsitItem = data.First(s => s.UserId == value.UserId && s.VideoId == value.VideoId);
                                exsitItem = value;
                            }
                            else
                            {
                                data.Add(value);
                            }

                        }
                        if (data != null && data.Any())
                        {
                            var ret = UserVideoProgressProxy.Add(data);
                        }
                        
                    }
                }
                catch (Exception err)
                {
                    
                }


            }
        }

写在最后

其实这种高IO的操作用sqlserver这种关系型数据库反而不好,Nosql在这种简单高IO的情境下要很多,改天可以改为redis试一试,估计会比sqlserver要好很多。


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK