46

KDD 2020 开源论文 | GPT-GNN:图神经网络的生成式预训练

 3 years ago
source link: http://mp.weixin.qq.com/s?__biz=MzIwMTc4ODE0Mw%3D%3D&%3Bmid=2247510667&%3Bidx=2&%3Bsn=173c1e7f9523165f3762f3e5105797b0
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

EnAnQz.gif

Mz26rym.png!mobile

论文标题: GPT-GNN: Generative Pre-Training of Graph Neural Networks

论文链接: https://arxiv.org/abs/2006.15437

代码链接: https://github.com/acbull/GPT-GNN

PPT:  https://acbull.github.io/pdf/gpt.pptx

jiuMzu2.png!mobile

简介

本文研究如何利用图生成作为自监督任务来预训练 GNN。 我们将图的生成概率分解成两个模块:1)节点特征生成;2)图结构生成。通过对这两个模块建模,GPT-GNN 可以捕捉图任 务里特征与结构之间的关联,从而不需要很多的标注数据就可达到很高的泛化性能。

IbQFVj6.png!mobile

背景:预训练

机器学习的成功很大程度上取决于数据。但是,高质量的标记数据通常很昂贵且难以获得,尤其是对于希望训练参数较多的模型。而相对应的,我们却可以很容易地获取大量的无标记数据,其数量可以是标记数据的数千倍。 

例如,在社交网络上进行异常检测时,恶意帐户的标注需要依赖于专家知识,数量较小,而整个网络的规模却可以达到十亿规模。

为了解决标注数据较少,尽可能利用其无标注数据,一个常规的做法是自监督的预训练(self-supervised pre-training)。其目标是设计合理的自监督任务,从而使模型能从无标注数据里学得数据的信息,作为初始化迁移到下游任务中。由于目标任务中很多的知识已经在预训练中学到,因此通过预训练,我们只需要非常少量的标注数据,就能得到较好的泛化性能。

zIbEJbF.png!mobile

在 NLP 领域,BERT 及其变种的取得了巨大的成功,证明了语言模型作为一个自监督任务,可以帮助训练非常深的 Transformer 模型,以捕捉语言的底层知识,如语法、句法、词义等。

同样,在 CV 领域,最近的工作如 SimCLR 也显示出通过对比学习(Contrastive Learning)对 ResNet 进行预训练也可以显著提升泛化性能。这些成功表明,无标注数据本身包含丰富的语义知识,因此如果通过预训练可以使模型能捕捉无标注数据的分布,就能作为初始化帮助一系列下游任务。

受到这些工作的启发,我们思考能否将预训练的想法运用到图数据分析中。本工作就致力于预训练图神经网络,以期 GNN 能够学习到图数据的结构和特征信息,从而能帮助标注数据较少的下游任务。

6VVnQrz.png!mobile

ZJfe2i7.png!mobile

GPT-GNN模型

要在图数据上做预训练,第一个问题是:如何设计合适的无监督学习任务?

本工作提出用生成模型来对图分布进行建模,即逐步预测出一个图中一个新节点会有哪些特征、会和图中哪些节点相连。

RnMfqm.png!mobile

由于我们想同时捕获属性和结构信息,因此需要将每个节点的条件生成概率分解为两项,特征生成与图结构生成。对每一个节点,我们会先掩盖其特征及部分边,仅提供剩下的部分作为已经观测到的边。

在第一步中,我们将通过已经观测到的边,预测该节点的特征,

在第二步中,我们将通过已经观测到的边,以及预测出的特征,来预测剩下的边。

我们可以写出对应的分解表达式。从理论上,这个目标的期望等同于整个图的生成概率。

为了并行高效地计算每个节点的 loss,避免信息泄露(如节点特征预测的时候如何避免看到该节点自己的输入特征),以及处理大图和增加负样本采样的准确性,我们做了很多的模型设计。详见文章。

JFbIRjv.png!mobile

实验

我们在两个大规模异构网络和一个同构网络上进行了实验。

第一个异构图是 Microsoft Academic Graph(OAG),其中包含超过 2 亿个节点和 23 亿条边。另一个是 Amazon Recommendation 数据集。

总体而言,我们提出的 GPT-GNN 在不同的实验设定下显著提高下游任务的性能,平均能达到 9.1% 的性能提升,且优于其他图预训练的方法。

A3i2ayv.png!mobile

我们还评估了在不同百分比的标记数据下,GPT-GNN 是否依然能取得提升。我们可以看到,使用 GPT 预训练时,仅使用 20% 标签数据的模型性能就会比使用 100% 数据进行直接监督学习的模型性能更高。这显示了预训练的有效性,尤其是在标签稀缺时。

Y77Fzez.png!mobile

更多阅读

3yEJRjr.png!mobile

iI7Bfy7.png!mobile

yEZFFzY.png!mobile

2mUBJnB.gif

# 投 稿 通 道 #

让你的论文被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢? 答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是 最新论文解读 ,也可以是 学习心得技术干货 。我们的目的只有一个,让知识真正流动起来。

:memo:  来稿标准:

• 稿件确系个人 原创作品 ,来稿需注明作者个人信息(姓名+学校/工作单位+学历/职位+研究方向) 

• 如果文章并非首发,请在投稿时提醒并附上所有已发布链接 

• PaperWeekly 默认每篇文章都是首发,均会添加“原创”标志

:mailbox_with_mail:  投稿邮箱:

• 投稿邮箱: [email protected] 

• 所有文章配图,请单独在附件中发送 

• 请留下即时联系方式(微信或手机),以便我们在编辑发布时和作者沟通

:mag:

现在,在 「知乎」 也能找到我们了

进入知乎首页搜索 「PaperWeekly」

点击 「关注」 订阅我们的专栏吧

关于PaperWeekly

PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击 「交流群」 ,小助手将把你带入 PaperWeekly 的交流群里。

R7nmyuB.gif

nUvi2i.jpg!mobile


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK