12

Lucas(卢卡斯)定理

 3 years ago
source link: http://www.cnblogs.com/duzhiyuanyuan/p/13415896.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

公式

$$C_n^m\%p=C_{n/p}^{m/p}*C_{n\%p}^{m\%p}\%p~~(p为素数)$$

代码如下

typedef long long ll;
ll mod_pow(ll x, ll n, ll mod)
{
	ll res = 1;
	while (n > 0)
	{
		if (n & 1)
			res = res * x % mod;
		x = x * x % mod;
		n >>= 1;
	}
	return res;
}
ll comb(ll n, ll m, ll p)
{
	if (m > n)
		return 0;
	ll a = 1, b = 1;
	m = min(n - m, m);
	while(m)
	{
		a = (a * n--) % p;
		b = (b * m--) % p;
	}
	return a * mod_pow(b, p - 2, p) % p;
}
ll Lucas(ll n, ll m, ll p)
{
	if (m == 0)
		return 1;
	return comb(n % p, m % p, p) * Lucas(n / p, m / p, p) % p;
}

例题

HDU 3037

解析:m个相同的豆子,放到n个不同的树里,有多少种方法。有$C_{n+m}^m$种。具体详解请看下面的扩展中的插板法。

代码如下:

#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
ll mod_pow(ll x, ll n, ll mod)
{
	ll res = 1;
	while (n > 0)
	{
		if (n & 1)
			res = res * x % mod;
		x = x * x % mod;
		n >>= 1;
	}
	return res;
}
ll comb(ll n, ll m, ll p)
{
	if (m > n)
		return 0;
	ll a = 1, b = 1;
	m = min(n - m, m);
	while(m)
	{
		a = (a * n--) % p;
		b = (b * m--) % p;
	}
	return a * mod_pow(b, p - 2, p) % p;
}
ll Lucas(ll n, ll m, ll p)
{
	if (m == 0)
		return 1;
	return comb(n % p, m % p, p) * Lucas(n / p, m / p, p) % p;
}
int main(int argc, char* argv[])
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	ll T, n, m, p;
	cin >> T;
	while (T--)
	{
		cin >> n >> m >> p;
		cout << Lucas(n + m, m, p) << endl;
	}
	return 0;
}

Nzia6z2.png!web

扩展

插板法

适用类型

一组相同的元素,分成若干不同的组,每组至少一个元素。

例题1

将8个相同的小球放到3个不同的盒子,每个盒子至少放一个球,一共有多少种方法。

解:8个盒子,有7个空,分到3个盒子,需要插2块板,$C_7^2=21$种。

对于不满足 每组至少一个元素 条件的,应该先 转化为标准形式。

例题2

将8个相同的小球放到3个不同的盒子,每个盒子至少放两个球,一共有多少种方法。

解析:先往每一个盒子里放一个小球。转化为:5个相同的小球放到不同的盒子,每个盒子至少放1个小球,一共有多少种方法。$C_4^2=6$种。

例题3

将8个相同的小球放到3个不同的盒子,有多少种方法。

解析:我们先让每个盒子吐出1个球,使得每个盒子至少一个球,分球的时候再让盒子吃回去。转化为:11个相同的球放到3个不同的盒子中,每个盒子至少一个,有多少种方法。$C_{10}^2=45$种。

例题4

$a+b+c=10$有多少组正整数解。

解析:转化为:10个相同的小球,放到不同的3个盒子中,每个盒子至少一个,有多少方法。$C_9^2=36$种。

例题5

$a+b+c=10$有多少组非负整数解。

解析:转化为:13个相同的小球,放到不同的3个盒子中,有多少方法。$C_{12}^2=66$种。

例题6

$a+b+c\leqslant 10$有多少组非负整数解。

解析1:转化为$a+b+c+d =10$,即10个相同的球,放到4个不同的盒子中,有多少方法。$C_{13}^3=286$种。

解析2:列举所有情况:$a+b+c=0(C_2^2)$,$a+b+c=1(C_3^2)$,$\cdots$,$a+b+c=10(C_{12}^2)$,$\sum\limits_{i=2}^{12}C_i^2=C_{13}^3=286$种。

注:$\sum\limits_{i=m}^nC_i^m=C_{n+1}^{m+1}$。

杨辉三角性质之一:斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK