

小浩算法|一文让你学会如何用代码判断-wx5c2da66615f74的博客
source link: https://blog.51cto.com/14159827/2473662
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

小浩算法|一文让你学会如何用代码判断
“24点”是一种数学游戏,正如象棋、围棋一样是一种人们喜闻乐见的娱乐活动。它始于何年何月已无从考究,但它以自己独具的数学魅力和丰富的内涵正逐渐被越来越多的人们所接受。今天就为大家分享一道关于“24点”的算法题目。
话不多说,直接看题。
题目:你有 4 张写有 1 到 9 数字的牌。你需要判断是否能通过 *,/,+,-,(,) 的运算得到 24。
输入: [4, 1, 8, 7]
输出: True
解释: (8-4) * (7-1) = 24
输入: [1, 2, 1, 2]
输出: False
注意:
- 除法运算符 / 表示实数除法,而不是整数除法。例如 :4 / (1 - 2/3) = 12 。
- 每个运算符对两个数进行运算。特别是我们不能用 - 作为一元运算符。例如,[1, 1, 1, 1] 作为输入时,表达式 -1 - 1 - 1 - 1 是不允许的。
- 你不能将数字连接在一起。例如,输入为 [1, 2, 1, 2] 时,不能写成 12 + 12 。
拿到题目,第一反应就可以想到暴li求解。如果我们要判断给出的4张牌是否可以通过组合得到24,那我们只需找出所有的可组合的方式进行遍历。
4个数字,3个操作符,外加括号,基本目测就能想到组合数不会大到超出边界。所以,我们只要把他们统统列出来,不就可以进行求解了吗?说干就干!
我们首先定义个方法,用来判断两个数的的所有操作符组合是否可以得到24。
func judgePoint24_2(a, b float64) bool {
return a+b == 24 || a*b == 24 || a-b == 24 || b-a == 24 || a/b == 24 || b/a == 24
}
但是这个方法写的正确吗?其实不对!因为在计算机中,实数在计算和存储过程中会有一些微小的误差,对于一些与零作比较的语句来说,有时会因误差而导致原本是等于零但结果却小于或大于零之类的情况发生,所以常用一个很小的数 1e-6 代替 0,进行判读!
(1e-6:表示1乘以10的负6次方。Math.abs(x)<1e-6 其实相当于x==0。1e-6(也就是0.000001)叫做epslon,用来抵消浮点运算中因为误差造成的相等无法判断的情况。这个知识点需要掌握!)
举个例子:
func main() {
var a float64
var b float64
b = 2.0
//math.Sqrt:开平方根
c := math.Sqrt(2)
a = b - c*c
fmt.Println(a == 0) //false
fmt.Println(a < 1e-6 && a > -(1e-6)) //true
}
这里直接用 a==0 就会得到false,但是通过 a < 1e-6 && a > -(1e-6) 却可以进行准确的判断。
所以我们将上面的方法改写:
//go语言
//judgePoint24_2:判断两个数的所有操作符组合是否可以得到24
func judgePoint24_2(a, b float64) bool {
return (a+b < 24+1e-6 && a+b > 24-1e-6) ||
(a*b < 24+1e-6 && a*b > 24-1e-6) ||
(a-b < 24+1e-6 && a-b > 24-1e-6) ||
(b-a < 24+1e-6 && b-a > 24-1e-6) ||
(a/b < 24+1e-6 && a/b > 24-1e-6) ||
(b/a < 24+1e-6 && b/a > 24-1e-6)
}
完善了通过两个数来判断是否可以得到24的方法,现在我们加一个判断三个数是否可以得到24的方法。
//硬核代码,不服来辩!
func judgePoint24_3(a, b, c float64) bool {
return judgePoint24_2(a+b, c) ||
judgePoint24_2(a-b, c) ||
judgePoint24_2(a*b, c) ||
judgePoint24_2(a/b, c) ||
judgePoint24_2(b-a, c) ||
judgePoint24_2(b/a, c) ||
judgePoint24_2(a+c, b) ||
judgePoint24_2(a-c, b) ||
judgePoint24_2(a*c, b) ||
judgePoint24_2(a/c, b) ||
judgePoint24_2(c-a, b) ||
judgePoint24_2(c/a, b) ||
judgePoint24_2(c+b, a) ||
judgePoint24_2(c-b, a) ||
judgePoint24_2(c*b, a) ||
judgePoint24_2(c/b, a) ||
judgePoint24_2(b-c, a) ||
judgePoint24_2(b/c, a)
}
好了。三个数的也出来了,我们再加一个判断4个数为24点的方法:(排列组合,我想大家都会....)
前方高能!!!
前方高能!!!
前方高能!!!
//硬核代码,不服来辩!
func judgePoint24(nums []int) bool {
return judgePoint24_3(float64(nums[0])+float64(nums[1]), float64(nums[2]), float64(nums[3])) ||
judgePoint24_3(float64(nums[0])-float64(nums[1]), float64(nums[2]), float64(nums[3])) ||
judgePoint24_3(float64(nums[0])*float64(nums[1]), float64(nums[2]), float64(nums[3])) ||
judgePoint24_3(float64(nums[0])/float64(nums[1]), float64(nums[2]), float64(nums[3])) ||
judgePoint24_3(float64(nums[1])-float64(nums[0]), float64(nums[2]), float64(nums[3])) ||
judgePoint24_3(float64(nums[1])/float64(nums[0]), float64(nums[2]), float64(nums[3])) ||
judgePoint24_3(float64(nums[0])+float64(nums[2]), float64(nums[1]), float64(nums[3])) ||
judgePoint24_3(float64(nums[0])-float64(nums[2]), float64(nums[1]), float64(nums[3])) ||
judgePoint24_3(float64(nums[0])*float64(nums[2]), float64(nums[1]), float64(nums[3])) ||
judgePoint24_3(float64(nums[0])/float64(nums[2]), float64(nums[1]), float64(nums[3])) ||
judgePoint24_3(float64(nums[2])-float64(nums[0]), float64(nums[1]), float64(nums[3])) ||
judgePoint24_3(float64(nums[2])/float64(nums[0]), float64(nums[1]), float64(nums[3])) ||
judgePoint24_3(float64(nums[0])+float64(nums[3]), float64(nums[2]), float64(nums[1])) ||
judgePoint24_3(float64(nums[0])-float64(nums[3]), float64(nums[2]), float64(nums[1])) ||
judgePoint24_3(float64(nums[0])*float64(nums[3]), float64(nums[2]), float64(nums[1])) ||
judgePoint24_3(float64(nums[0])/float64(nums[3]), float64(nums[2]), float64(nums[1])) ||
judgePoint24_3(float64(nums[3])-float64(nums[0]), float64(nums[2]), float64(nums[1])) ||
judgePoint24_3(float64(nums[3])/float64(nums[0]), float64(nums[2]), float64(nums[1])) ||
judgePoint24_3(float64(nums[2])+float64(nums[3]), float64(nums[0]), float64(nums[1])) ||
judgePoint24_3(float64(nums[2])-float64(nums[3]), float64(nums[0]), float64(nums[1])) ||
judgePoint24_3(float64(nums[2])*float64(nums[3]), float64(nums[0]), float64(nums[1])) ||
judgePoint24_3(float64(nums[2])/float64(nums[3]), float64(nums[0]), float64(nums[1])) ||
judgePoint24_3(float64(nums[3])-float64(nums[2]), float64(nums[0]), float64(nums[1])) ||
judgePoint24_3(float64(nums[3])/float64(nums[2]), float64(nums[0]), float64(nums[1])) ||
judgePoint24_3(float64(nums[1])+float64(nums[2]), float64(nums[0]), float64(nums[3])) ||
judgePoint24_3(float64(nums[1])-float64(nums[2]), float64(nums[0]), float64(nums[3])) ||
judgePoint24_3(float64(nums[1])*float64(nums[2]), float64(nums[0]), float64(nums[3])) ||
judgePoint24_3(float64(nums[1])/float64(nums[2]), float64(nums[0]), float64(nums[3])) ||
judgePoint24_3(float64(nums[2])-float64(nums[1]), float64(nums[0]), float64(nums[3])) ||
judgePoint24_3(float64(nums[2])/float64(nums[1]), float64(nums[0]), float64(nums[3])) ||
judgePoint24_3(float64(nums[1])+float64(nums[3]), float64(nums[2]), float64(nums[0])) ||
judgePoint24_3(float64(nums[1])-float64(nums[3]), float64(nums[2]), float64(nums[0])) ||
judgePoint24_3(float64(nums[1])*float64(nums[3]), float64(nums[2]), float64(nums[0])) ||
judgePoint24_3(float64(nums[1])/float64(nums[3]), float64(nums[2]), float64(nums[0])) ||
judgePoint24_3(float64(nums[3])-float64(nums[1]), float64(nums[2]), float64(nums[0])) ||
judgePoint24_3(float64(nums[3])/float64(nums[1]), float64(nums[2]), float64(nums[0]))
}
Go语言示例
搞定收工,我们整合全部代码如下:
//硬核编程...
func judgePoint24(nums []int) bool {
return judgePoint24_3(float64(nums[0])+float64(nums[1]), float64(nums[2]), float64(nums[3])) ||
judgePoint24_3(float64(nums[0])-float64(nums[1]), float64(nums[2]), float64(nums[3])) ||
judgePoint24_3(float64(nums[0])*float64(nums[1]), float64(nums[2]), float64(nums[3])) ||
judgePoint24_3(float64(nums[0])/float64(nums[1]), float64(nums[2]), float64(nums[3])) ||
judgePoint24_3(float64(nums[1])-float64(nums[0]), float64(nums[2]), float64(nums[3])) ||
judgePoint24_3(float64(nums[1])/float64(nums[0]), float64(nums[2]), float64(nums[3])) ||
judgePoint24_3(float64(nums[0])+float64(nums[2]), float64(nums[1]), float64(nums[3])) ||
judgePoint24_3(float64(nums[0])-float64(nums[2]), float64(nums[1]), float64(nums[3])) ||
judgePoint24_3(float64(nums[0])*float64(nums[2]), float64(nums[1]), float64(nums[3])) ||
judgePoint24_3(float64(nums[0])/float64(nums[2]), float64(nums[1]), float64(nums[3])) ||
judgePoint24_3(float64(nums[2])-float64(nums[0]), float64(nums[1]), float64(nums[3])) ||
judgePoint24_3(float64(nums[2])/float64(nums[0]), float64(nums[1]), float64(nums[3])) ||
judgePoint24_3(float64(nums[0])+float64(nums[3]), float64(nums[2]), float64(nums[1])) ||
judgePoint24_3(float64(nums[0])-float64(nums[3]), float64(nums[2]), float64(nums[1])) ||
judgePoint24_3(float64(nums[0])*float64(nums[3]), float64(nums[2]), float64(nums[1])) ||
judgePoint24_3(float64(nums[0])/float64(nums[3]), float64(nums[2]), float64(nums[1])) ||
judgePoint24_3(float64(nums[3])-float64(nums[0]), float64(nums[2]), float64(nums[1])) ||
judgePoint24_3(float64(nums[3])/float64(nums[0]), float64(nums[2]), float64(nums[1])) ||
judgePoint24_3(float64(nums[2])+float64(nums[3]), float64(nums[0]), float64(nums[1])) ||
judgePoint24_3(float64(nums[2])-float64(nums[3]), float64(nums[0]), float64(nums[1])) ||
judgePoint24_3(float64(nums[2])*float64(nums[3]), float64(nums[0]), float64(nums[1])) ||
judgePoint24_3(float64(nums[2])/float64(nums[3]), float64(nums[0]), float64(nums[1])) ||
judgePoint24_3(float64(nums[3])-float64(nums[2]), float64(nums[0]), float64(nums[1])) ||
judgePoint24_3(float64(nums[3])/float64(nums[2]), float64(nums[0]), float64(nums[1])) ||
judgePoint24_3(float64(nums[1])+float64(nums[2]), float64(nums[0]), float64(nums[3])) ||
judgePoint24_3(float64(nums[1])-float64(nums[2]), float64(nums[0]), float64(nums[3])) ||
judgePoint24_3(float64(nums[1])*float64(nums[2]), float64(nums[0]), float64(nums[3])) ||
judgePoint24_3(float64(nums[1])/float64(nums[2]), float64(nums[0]), float64(nums[3])) ||
judgePoint24_3(float64(nums[2])-float64(nums[1]), float64(nums[0]), float64(nums[3])) ||
judgePoint24_3(float64(nums[2])/float64(nums[1]), float64(nums[0]), float64(nums[3])) ||
judgePoint24_3(float64(nums[1])+float64(nums[3]), float64(nums[2]), float64(nums[0])) ||
judgePoint24_3(float64(nums[1])-float64(nums[3]), float64(nums[2]), float64(nums[0])) ||
judgePoint24_3(float64(nums[1])*float64(nums[3]), float64(nums[2]), float64(nums[0])) ||
judgePoint24_3(float64(nums[1])/float64(nums[3]), float64(nums[2]), float64(nums[0])) ||
judgePoint24_3(float64(nums[3])-float64(nums[1]), float64(nums[2]), float64(nums[0])) ||
judgePoint24_3(float64(nums[3])/float64(nums[1]), float64(nums[2]), float64(nums[0]))
}
func judgePoint24_3(a, b, c float64) bool {
return judgePoint24_2(a+b, c) ||
judgePoint24_2(a-b, c) ||
judgePoint24_2(a*b, c) ||
judgePoint24_2(a/b, c) ||
judgePoint24_2(b-a, c) ||
judgePoint24_2(b/a, c) ||
judgePoint24_2(a+c, b) ||
judgePoint24_2(a-c, b) ||
judgePoint24_2(a*c, b) ||
judgePoint24_2(a/c, b) ||
judgePoint24_2(c-a, b) ||
judgePoint24_2(c/a, b) ||
judgePoint24_2(c+b, a) ||
judgePoint24_2(c-b, a) ||
judgePoint24_2(c*b, a) ||
judgePoint24_2(c/b, a) ||
judgePoint24_2(b-c, a) ||
judgePoint24_2(b/c, a)
}
func judgePoint24_2(a, b float64) bool {
return (a+b < 24+1e-6 && a+b > 24-1e-6) ||
(a*b < 24+1e-6 && a*b > 24-1e-6) ||
(a-b < 24+1e-6 && a-b > 24-1e-6) ||
(b-a < 24+1e-6 && b-a > 24-1e-6) ||
(a/b < 24+1e-6 && a/b > 24-1e-6) ||
(b/a < 24+1e-6 && b/a > 24-1e-6)
}
由于代码过于硬核,
我们直接击败100%的对手:
(没想到吧!代码还可以这么写~)

本期的题目应该都能看懂吗?
大家还有其他的方法来得到答案吗?
评论区留下你的想法吧!
来源:宜信技术学院
小浩:宜信科技中心攻城狮一枚,热爱算法,热爱学习,不拘泥于枯燥编程代码,更喜欢用轻松方式把问题简单阐述,希望喜欢的小伙伴可以多多关注!
原文首发于:「小浩算法」
Recommend
-
98
2017年终总结 今年鸡年,鄙人24岁,犯值太...
-
33
摘要:移动开发的跨平台是大势所趋,可以节省开发成本,提高开发效率,迅速响应业务变化,现在主流的应用还是使用H5和原生的通信来实现跨平台的开发。JSBridge框架解决JS和Native的通信问题实现移动端跨平台开发。
-
72
以 OpenFlow 技术为核心的软件定义网络(SDN)框架具有集中控制的功能能够自己感知网络拓扑的变化,在细粒度的路径选择、接入控制、负载均衡方面有着天然的优势,为 IPv6 组播功能的实现提供了好的解决方案。
-
25
项目描述: 在该项目中,你将使用强化学习算法,实现一个自动走迷宫机器人。
-
31
一、流程分析 1.1 入口程序 在 SpringApplication#run(String... args) 方法中,外部化配置关键流程分为以下四步 public ConfigurableApplicationContext run(String... args) {...
-
58
API网关如何实现对服务下线实时感知 上篇文章《Eureka 缓存机制》介绍了Eureka的缓存机制,相信大家对Eureka 有了进一步的了解,本文将详细介绍API网关...
-
26
“24点”是一种数学游戏,正如象棋、围棋一样是一种人们喜闻乐见的娱乐活动。它始于何年何月已无从考究,但它以自己独具的数学魅力和丰富的内涵正逐渐被越来越多的人们所接受。今天就为大家分享一道关于“24点”的算法题目。 话不多...
-
19
今天为大家分享很出名的LRU算法,第一讲共包括4节。 LRU概述 LRU使用 LRU实现 Redis近LRU概述 第一部分:LRU概述 LRU是Least Recently Used的缩写,译为最近最少使用。它的理论基础为“最...
-
4
利润率超 1000%?五分学会如何用显卡参与以太坊挖矿BTCWan2021-03-17 01:41:262353一边是全球半导体产量骤减,另一边加密货币价格不断上涨。产能下降,但是需求上升促使显卡价格一路走...
-
4
摄影中的光线分为几类,一文让你学会摄影用光 新酷产品第一时间免费试玩,还有众多优质达...
About Joyk
Aggregate valuable and interesting links.
Joyk means Joy of geeK