

GitHub - signatrix/efficientdet: (Pretrained weights provided) EfficientDet: Sca...
source link: https://github.com/signatrix/efficientdet
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

README.md
EfficientDet: Scalable and Efficient Object Detection
Introduction
Here is our pytorch implementation of the model described in the paper EfficientDet: Scalable and Efficient Object Detection paper (Note: We also provide pre-trained weights, which you could see at ./trained_models)
An example of our model's output.
Datasets
Dataset Classes #Train images #Validation images COCO2017 80 118k 5kCreate a data folder under the repository,
cd {repo_root}
mkdir data
- COCO:
Download the coco images and annotations from coco website. Make sure to put the files as the following structure:
COCO ├── annotations │ ├── instances_train2017.json │ └── instances_val2017.json │── images ├── train2017 └── val2017
How to use our code
With our code, you can:
- Train your model by running python train.py
- Evaluate mAP for COCO dataset by running python mAP_evaluation.py
- Test your model for COCO dataset by running python test_dataset.py --pretrained_model path/to/trained_model
- Test your model for video by running python test_video.py --pretrained_model path/to/trained_model --input path/to/input/file --output path/to/output/file
Experiments
We trained our model by using 3 NVIDIA GTX 1080Ti. Below is mAP (mean average precision) for COCO val2017 dataset
Average Precision IoU=0.50:0.95 area= all maxDets=100 0.314 Average Precision IoU=0.50 area= all maxDets=100 0.461 Average Precision IoU=0.75 area= all maxDets=100 0.343 Average Precision IoU=0.50:0.95 area= small maxDets=100 0.093 Average Precision IoU=0.50:0.95 area= medium maxDets=100 0.358 Average Precision IoU=0.50:0.95 area= large maxDets=100 0.517 Average Recall IoU=0.50:0.95 area= all maxDets=1 0.268 Average Recall IoU=0.50:0.95 area= all maxDets=10 0.382 Average Recall IoU=0.50:0.95 area= all maxDets=100 0.403 Average Recall IoU=0.50:0.95 area= small maxDets=100 0.117 Average Recall IoU=0.50:0.95 area= medium maxDets=100 0.486 Average Recall IoU=0.50:0.95 area= large maxDets=100 0.625Results
Some predictions are shown below:
Requirements
- python 3.6
- pytorch 1.2
- opencv (cv2)
- tensorboard
- tensorboardX (This library could be skipped if you do not use SummaryWriter)
- pycocotools
- efficientnet_pytorch
References
- Mingxing Tan, Ruoming Pang, Quoc V. Le. "EfficientDet: Scalable and Efficient Object Detection." EfficientDet.
- Our implementation borrows some parts from RetinaNet.Pytorch
Citation
@article{EfficientDetSignatrix,
Author = {Signatrix GmbH},
Title = {A Pytorch Implementation of EfficientDet Object Detection},
Journal = {https://github.com/signatrix/efficientdet},
Year = {2020}
}
Recommend
-
39
README.md efficientdet BiFPN and Modified BiFPN. effcientNet backbones and pretrained weights from @rwightman(
-
28
在计算机视觉领域,模型效率的重要性越来越高。近日,谷歌大脑团队 Quoc V. Le 等人系统研究了多种目标检测神经网络架构设计,提出了能够提升模型效率的几项关键优化。首先,他们提出加权双向特征金字塔网络(weighted bi-directional fe...
-
33
README.md EfficientDet This is an implementation of EfficientDet for object detection on K...
-
75
README.md EfficientDet: Scalable and Efficient Object Detection, in PyTorch A PyTorch implementation of
-
145
点击 我爱计算机视觉 标星,更快获取CVML新技术 本文经作者MoonSmile授权转载,原文地址: https://zhuanlan.zhihu.com/p/96773680 本文介绍谷歌发表于 ICML 2019的...
-
4
Managing SCA enforcement changes in EuropeBusinesses who have customers in Europe have likely heard about Strong Customer Authentication (SCA) for years, but it’s just b...
-
6
SAST and SCA: Better together with Snyk Daniel Berman
-
4
SCA是什么?我想可能很多人都有这个问题。SCA的全称叫做Software Composition Analysis,有的朋友可能直接把他叫做软件成分分析,也可以叫他组件安全分析。现代的SCA大多数都是基于白盒的角度去做,也就是SAST中的一环,但是也有不少场景需求对二进制或者运行中...
-
10
9 Things to Consider When Choosing an SCA Tool SCA is an essential...
-
6
话题:爱生雅(SCA)VS 中国证监会LOGO 2018/10/14 - 16:19
About Joyk
Aggregate valuable and interesting links.
Joyk means Joy of geeK