32

决策树之ID3算法解读

 4 years ago
source link: https://flashgene.com/archives/76161.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

在机器学习中,我们经常能听到决策树的声音,那究竟什幺是决策树呢?

决策树的基本认识

决策树是一种依托决策而建立起来的一种树。在机器学习中,决策树是一种预测模型,代表的是一种对 象属性与对象值之间的一种映射关系,每一个节点代表某个对象,树中的每一个分叉路径代表某个可能 的属性值,而每一个叶子节点则对应从根节点到该叶子节点所经历的路径所表示的对象的值。决策树仅 有单一输出,如果有多个输出,可以分别建立独立的决策树以处理不同的输出。

举个例子,比如一个女孩从年龄,长相,收入,职业的层层筛选来判断相亲对象是否值得见上一面。 如下图

i6FJN3I.png!web

正如这种形式,便是一个简单的决策树。

纯度和信息熵指标

假设现有打篮球的数据集,训练数据如下:

Bneqeqa.png!web

那幺我们该如何构造一个判断是否去打篮球的决策树呢?再回顾一下决策树的构造原理,在决策过程中有三个重要的问题:将哪个属性作为根节点?选择哪些属性作为后继节点?什幺时候停止并得到目标值?

显然将哪个属性(天气、温度、湿度、刮风)作为根节点是个关键问题, 那我们先来看两个重要的指标:

纯度

你可以把决策树的构造过程理解成为寻找纯净划分的过程。数学上,我们可以用纯度来表示,纯度换一种方式来解释就是让目标变量的分歧最小。

这里举个例子,假设有 3 个集合:

集合 1:6 次都去打篮球;

集合 2:4 次去打篮球,2 次不去打篮球;

集合 3:3 次去打篮球,3 次不去打篮球。

按照纯度指标来说,集合 1> 集合 2> 集合 3。因为集合 1 的分歧最小,集合 3 的分歧最大。

信息熵(entropy)

它表示了信息的不确定度

在信息论中,随机离散事件出现的概率存在着不确定性。为了衡量这种信息的不确定性,信息学之父香农引入了信息熵的概念,并给出了计算信息熵的数学公式:

YZje2aE.png!web

p(i|t) 代表了节点 t 为分类 i 的概率,其中 log2 为取以 2 为底的对数。这里我们不是来介绍公式的,而是说存在一种度量,它能帮我们反映出来这个信息的不确定度。当不确定性越大时,它所包含的信息量也就越大,信息熵也就越高。

举个简单的例子,假设有 2 个集合

集合 1:5 次去打篮球,1 次不去打篮球;

集合 2:3 次去打篮球,3 次不去打篮球。

在集合 1 中,有 6 次决策,其中打篮球是 5 次,不打篮球是 1 次。那幺假设:类别 1 为“打篮球”,即次数为 5;类别 2 为“不打篮球”,即次数为 1。那幺节点划分为类别 1 的概率是 5/6,为类别 2 的概率是 1/6,带入上述信息熵公式可以计算得出:

vmU7f2m.png!web

同样,集合 2 中,也是一共 6 次决策,其中类别 1 中“打篮球”的次数是 3,类别 2“不打篮球”的次数也是 3,那幺信息熵为多少呢?我们可以计算得出:

feEb6fb.png!web

从上面的计算结果中可以看出,信息熵越大,纯度越低。当集合中的所有样本均匀混合时,信息熵最大,纯度最低。我们在构造决策树的时候,会基于纯度来构建。

下面我们就来认识一下不纯度”的指标的一种 :ID3算法

ID3 算法介绍

ID3算法是决策树的一种,它是基于奥卡姆剃刀原理的,即用尽量用较少的东西做更多的事。ID3算法, 即Iterative Dichotomiser 3,迭代二叉树3代,是Ross Quinlan发明的一种决策树算法,这个 算法的基础就是上面提到的奥卡姆剃刀原理,越是小型的决策树越优于大的决策树,尽管如此,也不总 是生成最小的树型结构,而是一个启发式算法。

在信息论中,期望信息越小,那幺信息增益就越大,从而纯度就越高。ID3算法的核心思想就是以信息 增益来度量属性的选择,选择分裂后信息增益最大的属性进行分裂。该算法采用自顶向下的贪婪搜索遍 历可能的决策空间。

ID3 信息增益

信息增益指的就是划分可以带来纯度的提高,信息熵的下降。它的计算公式,是父亲节点的信息熵减去所有子节点的信息熵。在计算的过程中,我们会计算每个子节点的归一化信息熵,即按照每个子节点在父节点中出现的概率,来计算这些子节点的信息熵。所以信息增益的公式可以表示为:

bIBRFbR.png!web

公式中 D 是父亲节点,Di 是子节点,Gain(D,a) 中的 a 作为 D 节点的属性选择。

假设天气 = 晴的时候,会有 5 次去打篮球,5 次不打篮球。其中 D1 刮风 = 是,有 2 次打篮球,1 次不打篮球。D2 刮风 = 否,有 3 次打篮球,4 次不打篮球。那幺 a 代表节点的属性,即天气 = 晴。

针对这个例子,D 作为节点的信息增益为:

ZfaMBvA.png!web

也就是 D 节点的信息熵 -2 个子节点的归一化信息熵。2 个子节点归一化信息熵 =3/10 的 D1 信息熵 +7/10 的 D2 信息熵。

我们基于 ID3 的算法规则,完整地计算下我们的训练集,训练集中一共有 7 条数据,3 个打篮球,4 个不打篮球,所以根节点的信息熵是:

iEfyEb7.png!web

如果你将天气作为属性的划分,会有三个叶子节点 D1、D2 和 D3,分别对应的是晴天、阴天和小雨。我们用 + 代表去打篮球,- 代表不去打篮球。那幺第一条记录,晴天不去打篮球,可以记为 1-,于是我们可以用下面的方式来记录 D1,D2,D3:

D1(天气 = 晴天)={1-,2-,6+}

D2(天气 = 阴天)={3+,7-}

D3(天气 = 小雨)={4+,5-}

我们先分别计算三个叶子节点的信息熵:

reieE3E.png!web

因为 D1 有 3 个记录,D2 有 2 个记录,D3 有 2 个记录,所以 D 中的记录一共是 3+2+2=7,即总数为 7。所以 D1 在 D(父节点)中的概率是 3/7,D2 在父节点的概率是 2/7,D3 在父节点的概率是 2/7。那幺作为子节点的归一化信息熵 = 3/7 0.918+2/7 1.0+2/7*1.0=0.965。

因为我们用 ID3 中的信息增益来构造决策树,所以要计算每个节点的信息增益。

天气作为属性节点的信息增益为,Gain(D , 天气)=0.985-0.965=0.020。

同理我们可以计算出其他属性作为根节点的信息增益,它们分别为 :

Gain(D , 温度)=0.128

Gain(D , 湿度)=0.020

Gain(D , 刮风)=0.020

我们能看出来温度作为属性的信息增益最大。因为 ID3 就是要将信息增益最大的节点作为父节点,这样可以得到纯度高的决策树,所以我们将温度作为根节点。

然后我们要将第一个叶节点,也就是 D1={1-,2-,3+,4+}进一步进行分裂,往下划分,计算其不同属性(天气、湿度、刮风)作为节点的信息增益,可以得到:

Gain(D , 天气)=0

Gain(D , 湿度)=0

Gain(D , 刮风)=0.0615

我们能看到刮风为 D1 的节点都可以得到最大的信息增益,这里我们选取刮风作为节点。同理,我们可以按照上面的计算步骤得到完整的决策树。


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK