22

OPEM (Open Source PEM Fuel Cell Simulation Tool)

 4 years ago
source link: https://www.tuicool.com/articles/VJn2IzI
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

umQzEbi.png!web

Table of contents

Overview

Modeling and simulation of proton-exchange membrane fuel cells (PEMFC) may work as a powerful tool in the research & development of renewable energy sources. The Open-Source PEMFC Simulation Tool (OPEM) is a modeling tool for evaluating the performance of proton exchange membrane fuel cells. This package is a combination of models (static/dynamic) that predict the optimum operating parameters of PEMFC. OPEM contained generic models that will accept as input, not only values of the operating variables such as anode and cathode feed gas, pressure and compositions, cell temperature and current density, but also cell parameters including the active area and membrane thickness. In addition, some of the different models of PEMFC that have been proposed in the OPEM, just focus on one particular FC stack, and some others take into account a part or all auxiliaries such as reformers. OPEM is a platform for collaborative development of PEMFC models.

aEnIziI.jpg!web

Fig1. OPEM Block Diagram

Open Hub PyPI Counter Github Stars Branch master develop AppVeyor Code Quality

Usage

Executable

  • Open CMD (Windows) or Terminal (UNIX)

  • Run python -m opem or python3 -m opem (or run OPEM.exe )

  • Enter PEM cell parameters (or run standard test vectors)

    1. Amphlett Static Model

      Input Description Unit T Cell operation temperature K PH2 Partial pressure atm PO2 Partial pressure atm i-start Cell operating current start point A i-step Cell operating current step A i-stop Cell operating current end point A A Active area cm^2 l Membrane thickness cm lambda An adjustable parameter with a min value of 14 and max value of 23 -- R(*Optional) R-Electronic ohm B An empirical constant depending on the cell and its operation state (Tafel slope) V JMax Maximum current density A/(cm^2) N Number of single cells -- * For more information about this model visit here
    2. Larminie-Dicks Static Model

      Input Description Unit E0 Fuel cell reversible no loss voltage V A The slope of the Tafel line V B Constant in the mass transfer term V i-start Cell operating current start point A i-step Cell operating current step A i-stop Cell operating current end point A i_n Internal current A i_0 Exchange current at which the overvoltage begins to move from zero A i_L Limiting current A RM The membrane and contact resistances ohm N Number of single cells -- * For more information about this model visit here
    3. Chamberline-Kim Static Model

      Input Description Unit E0 Open circuit voltage V b Tafel's parameter for the oxygen reduction V R Resistance ohm.cm^2 i-start Cell operating current start point A i-step Cell operating current step A i-stop Cell operating current end point A A Active area cm^2 m Diffusion's parameters V n Diffusion's parameters (A^-1)(cm^2) N Number of single cells -- * For more information about this model visit here
    4. Padulles Dynamic Model I

      Input Description Unit E0 No load voltage V T Fuel cell temperature K KH2 Hydrogen valve constant kmol.s^(-1).atm^(-1) KO2 Oxygen valve constant kmol.s^(-1).atm^(-1) tH2 Hydrogen time constant s tO2 Oxygen time constant s B Activation voltage constant V C Activation constant parameter A^(-1) Rint Fuel cell internal resistance ohm rho Hydrogen-Oxygen flow ratio -- qH2 Molar flow of hydrogen kmol/s N0 Number of cells -- i-start Cell operating current start point A i-step Cell operating current step A i-stop Cell operating current end point A * For more information about this model visit here
    5. Padulles Dynamic Model II

      Input Description Unit E0 No load voltage V T Fuel cell temperature K KH2 Hydrogen valve constant kmol.s^(-1).atm^(-1) KH2O Water valve constant kmol.s^(-1).atm^(-1) KO2 Oxygen valve constant kmol.s^(-1).atm^(-1) tH2 Hydrogen time constant s tH2O Water time constant s tO2 Oxygen time constant s B Activation voltage constant V C Activation constant parameter A^(-1) Rint Fuel cell internal resistance ohm rho Hydrogen-Oxygen flow ratio -- qH2 Molar flow of hydrogen kmol/s N0 Number of cells -- i-start Cell operating current start point A i-step Cell operating current step A i-stop Cell operating current end point A * For more information about this model visit here
    6. Padulles-Hauer Dynamic Model

      Input Description Unit E0 No load voltage V T Fuel cell temperature K KH2 Hydrogen valve constant kmol.s^(-1).atm^(-1) KH2O Water valve constant kmol.s^(-1).atm^(-1) KO2 Oxygen valve constant kmol.s^(-1).atm^(-1) tH2 Hydrogen time constant s tH2O Water time constant s tO2 Oxygen time constant s t1 Reformer time constant s t2 Reformer time constant s B Activation voltage constant V C Activation constant parameter A^(-1) CV Conversion factor -- Rint Fuel cell internal resistance ohm rho Hydrogen-Oxygen flow ratio -- qMethanol Molar flow of methanol kmol/s N0 Number of cells -- i-start Cell operating current start point A i-step Cell operating current step A i-stop Cell operating current end point A * For more information about this model visit here
    7. Padulles-Amphlett Dynamic Model

      Input Description Unit E0 No load voltage V T Fuel cell temperature K KH2 Hydrogen valve constant kmol.s^(-1).atm^(-1) KH2O Water valve constant kmol.s^(-1).atm^(-1) KO2 Oxygen valve constant kmol.s^(-1).atm^(-1) tH2 Hydrogen time constant s tH2O Water time constant s tO2 Oxygen time constant s t1 Reformer time constant s t2 Reformer time constant s A Active area cm^2 l Membrane thickness cm lambda An adjustable parameter with a min value of 14 and max value of 23 -- R(*Optional) R-Electronic ohm B An empirical constant depending on the cell and its operation state (Tafel slope) V JMax Maximum current density A/(cm^2) CV Conversion factor -- rho Hydrogen-Oxygen flow ratio -- qMethanol Molar flow of methanol kmol/s N0 Number of cells -- i-start Cell operating current start point A i-step Cell operating current step A i-stop Cell operating current end point A * For more information about this model visit here
    • Find your reports in Model_Name folder

    Screen Record

    NrERB3n.png!web

    Screen Record

Library

  1. Amphlett Static Model

    >>> from opem.Static.Amphlett import Static_Analysis
    >>> Test_Vector={"T": 343.15,"PH2": 1,"PO2": 1,"i-start": 0,"i-stop": 75,"i-step": 0.1,"A": 50.6,"l": 0.0178,"lambda": 23,"N": 1,"R": 0,"JMax": 1.5,"B": 0.016,"Name": "Amphlett_Test"}
    >>> data=Static_Analysis(InputMethod=Test_Vector,TestMode=True,PrintMode=False,ReportMode=False)
    Key Description Type Status Simulation status Bool P Power List I Cell operating current List V FC voltage List EFF Efficiency List Ph Thermal power List V0 Linear-Apx intercept Float K Linear-Apx slope Float Eta_Active Eta activation List Eta_Conc Eta concentration List Eta_Ohmic Eta ohmic List VE Estimated FC voltage List
    • For more information about this model visit here
  2. Larminie-Dicks Static Model

    >>> from opem.Static.Larminie_Dicks import Static_Analysis
    >>> Test_Vector = {"A": 0.0587,"E0": 1.178,"B": 0.0517,"RM": 0.0018,"i_0": 0.00654,"i_L": 100.0,"i_n": 0.23,"N": 23,"i-start": 0.1,"i-stop": 98,"i-step": 0.1,"Name": "Larminiee_Test"}
    >>> data=Static_Analysis(InputMethod=Test_Vector,TestMode=True,PrintMode=False,ReportMode=False)
    Key Description Type Status Simulation status Bool P Power List I Cell operating current List V FC voltage List EFF Efficiency List Ph Thermal power List V0 Linear-Apx intercept Float K Linear-Apx slope Float VE Estimated FC voltage List
    • For more information about this model visit here
  3. Chamberline-Kim Static Model

    >>> from opem.Static.Chamberline_Kim import Static_Analysis
    >>> Test_Vector = {"A": 50.0,"E0": 0.982,"b": 0.0689,"R": 0.328,"m": 0.000125,"n": 9.45,"N": 1,"i-start": 1,"i-stop": 42.5,"i-step": 0.1,"Name": "Chamberline_Test"}
    >>> data=Static_Analysis(InputMethod=Test_Vector,TestMode=True,PrintMode=False,ReportMode=False)
    Key Description Type Status Simulation status Bool P Power List I Cell operating current List V FC voltage List EFF Efficiency List Ph Thermal power List V0 Linear-Apx intercept Float K Linear-Apx slope Float VE Estimated FC voltage List
    • For more information about this model visit here
  4. Padulles Dynamic Model I

    >>> from opem.Dynamic.Padulles1 import Dynamic_Analysis
    >>> Test_Vector = {"T": 343,"E0": 0.6,"N0": 88,"KO2": 0.0000211,"KH2": 0.0000422,"tH2": 3.37,"tO2": 6.74,"B": 0.04777,"C": 0.0136,"Rint": 0.00303,"rho": 1.168,"qH2": 0.0004,"i-start": 0,"i-stop": 100,"i-step": 0.1,"Name": "PadullesI_Test"}
    >>> data=Dynamic_Analysis(InputMethod=Test_Vector,TestMode=True,PrintMode=False,ReportMode=False)
    Key Description Type Status Simulation status Bool P Power List I Cell operating current List V FC voltage List EFF Efficiency List PO2 Partial pressure List PH2 Partial pressure List Ph Thermal power List V0 Linear-Apx intercept Float K Linear-Apx slope Float VE Estimated FC voltage List
    • For more information about this model visit here
  5. Padulles Dynamic Model II

    >>> from opem.Dynamic.Padulles2 import Dynamic_Analysis
    >>> Test_Vector = {"T": 343,"E0": 0.6,"N0": 5,"KO2": 0.0000211,"KH2": 0.0000422,"KH2O": 0.000007716,"tH2": 3.37,"tO2": 6.74,"tH2O": 18.418,"B": 0.04777,"C": 0.0136,"Rint": 0.00303,"rho": 1.168,"qH2": 0.0004,"i-start": 0.1,"i-stop": 100,"i-step": 0.1,"Name": "Padulles2_Test"}
    >>> data=Dynamic_Analysis(InputMethod=Test_Vector,TestMode=True,PrintMode=False,ReportMode=False)
    Key Description Type Status Simulation status Bool P Power List I Cell operating current List V FC voltage List EFF Efficiency List PO2 Partial pressure List PH2 Partial pressure List PH2O Partial pressure List Ph Thermal power List V0 Linear-Apx intercept Float K Linear-Apx slope Float VE Estimated FC voltage List
    • For more information about this model visit here
  6. Padulles-Hauer Dynamic Model

    >>> from opem.Dynamic.Padulles_Hauer import Dynamic_Analysis
    >>> Test_Vector = {"T": 343,"E0": 0.6,"N0": 5,"KO2": 0.0000211,"KH2": 0.0000422,"KH2O": 0.000007716,"tH2": 3.37,"tO2": 6.74,"t1": 2,"t2": 2,"tH2O": 18.418,"B": 0.04777,"C": 0.0136,"Rint": 0.00303,"rho": 1.168,"qMethanol": 0.0002,"CV": 2,"i-start": 0.1,"i-stop": 100,"i-step": 0.1,"Name": "Padulles_Hauer_Test"}
    >>> data=Dynamic_Analysis(InputMethod=Test_Vector,TestMode=True,PrintMode=False,ReportMode=False)
    Key Description Type Status Simulation status Bool P Power List I Cell operating current List V FC voltage List EFF Efficiency List PO2 Partial pressure List PH2 Partial pressure List PH2O Partial pressure List Ph Thermal power List V0 Linear-Apx intercept Float K Linear-Apx slope Float VE Estimated FC voltage List
    • For more information about this model visit here
  7. Padulles-Amphlett Dynamic Model

    >>> from opem.Dynamic.Padulles_Amphlett import Dynamic_Analysis
    >>> Test_Vector = {"A": 50.6,"l": 0.0178,"lambda": 23,"JMax": 1.5,"T": 343,"N0": 5,"KO2": 0.0000211,"KH2": 0.0000422,"KH2O": 0.000007716,"tH2": 3.37,"tO2": 6.74,"t1": 2,"t2": 2,"tH2O": 18.418,"B": 0.016,"rho": 1.168,"qMethanol": 0.0002,"CV": 2,"i-start": 0.1,"i-stop": 75,"i-step": 0.1,"Name": "Padulles_Amphlett_Test"}
    >>> data=Dynamic_Analysis(InputMethod=Test_Vector,TestMode=True,PrintMode=False,ReportMode=False)
    Key Description Type Status Simulation status Bool P Power List I Cell operating current List V FC voltage List EFF Efficiency List PO2 Partial pressure List PH2 Partial pressure List PH2O Partial pressure List Ph Thermal power List V0 Linear-Apx intercept Float K Linear-Apx slope Float Eta_Active Eta activation List Eta_Conc Eta concentration List Eta_Ohmic Eta ohmic List VE Estimated FC voltage List
    • For more information about this model visit here

    Modes

    1. TestMode : Active test mode and get/return data as dict , (Default : False )
    2. ReportMode : Generate reports( .csv , .opem , .html ) and print result in console, (Default : True )
    3. PrintMode : Control printing in console, (Default : True )

    Note

    • Return type : dict

Telegram Bot

  • Send /start command to OPEM BOT
  • Choose models from menu
  • Send your test vector according to the template
  • Download your results

Try OPEM in Your Browser!

OPEM can be used online in interactive Jupyter Notebooks via the Binder service! Try it out now! :

  • Check .ipynb files in Documents folder
  • Edit and execute each part of the notes, step by step from the top panel by run button
  • For executing a complete simulation, you can edit Test_Vector in Full Run section

Issues & Bug Reports

Just fill an issue and describe it. We'll check it ASAP! or send an email to [email protected] .

Gitter is another option :

Todo

  • Static Analysis
    • Amphlett Static Model
      • Nernst Voltage
      • PEMFC losses model
      • Power of PEMFC
      • Efficiency of PEMFC
    • Larminie-Dicks Static Model
      • PEMFC losses model
      • Power of PEMFC
      • Efficiency of PEMFC
    • Chamberline-Kim Static Model
      • PEMFC losses model
      • Power of PEMFC
      • Efficiency of PEMFC
  • Flat Output
    • Simulation Result
    • CSV File
    • HTML
  • GUI
    • Plot Graphs
    • Input/Output
  • Dynamic Analysis
    • Padulles Dynamic Model I
      • Nernst Voltage
      • Voltage of PEMFC
      • Power of PEMFC
      • Efficiency of PEMFC
    • Padulles Dynamic Model II
      • Nernst Voltage
      • Voltage of PEMFC
      • Power of PEMFC
      • Efficiency of PEMFC
    • Padulles-Hauer Dynamic Model
      • Nernst Voltage
      • Voltage of PEMFC
      • Power of PEMFC
      • Efficiency of PEMFC
    • Padulles-Amphlett Dynamic Model
      • Nernst Voltage
      • Voltage of PEMFC
      • Power of PEMFC
      • Efficiency of PEMFC
  • MATLAB

Outputs

  1. HTML
  2. CSV
  3. OPEM

Dependencies

master develop

Thanks

Reference

1- J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Peppley, and P. R. Roberge. 1995. "Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell." J. Electrochem. Soc. (The Electrochemical Society, Inc.) 142 (1): 9-15. doi: 10.1149/1.2043959.

2- Jeferson M. Correa, Felix A. Farret, Vladimir A. Popov, Marcelo G. Simoes. 2005. "Sensitivity Analysis of the Modeling Parameters Used in Simulation of Proton Exchange Membrane Fuel Cells." IEEE Transactions on Energy Conversion (IEEE) 20 (1): 211-218. doi:10.1109/TEC.2004.842382.

3- Junbom Kim, Seong-Min Lee, Supramaniam Srinivasan, Charles E. Chamberlin. 1995. "Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation." Journal of The Electrochemical Society (The Electrochemical Society) 142 (8): 2670-2674. doi:10.1149/1.2050072.

4- I. Sadli, P. Thounthong, J.-P. Martin, S. Rael, B. Davat. 2006. "Behaviour of a PEMFC supplying a low voltage static converter." Journal of Power Sources (Elsevier) 156: 119–125. doi:10.1016/j.jpowsour.2005.08.021.

5- J. Padulles, G.W. Ault, J.R. McDonald. 2000. "An integrated SOFC plant dynamic model for power systems simulation." Journal of Power Sources (Elsevier) 86 (1-2): 495-500. doi:10.1016/S0378-7753(99)00430-9.

6- Hauer, K.-H. 2001. "Analysis tool for fuel cell vehicle hardware and software (controls) with an application to fuel economy comparisons of alternative system designs." Ph.D. dissertation, Transportation Technology and Policy, University of California Davis.

7- A. Saadi, M. Becherif, A. Aboubou, M.Y. Ayad. 2013. "Comparison of proton exchange membrane fuel cell static models." Renewable Energy (Elsevier) 56: 64-71. doi:dx.doi.org/10.1016/j.renene.2012.10.012.

8- Diego Feroldi, Marta Basualdo. 2012. "Description of PEM Fuel Cells System." Green Energy and Technology (Springer) 49-72. doi:10.1007/978-1-84996-184-4_2

9- Gottesfeld, Shimshon. n.d. The Polymer Electrolyte Fuel Cell: Materials Issues in a Hydrogen Fueled Power Source. http://physics.oregonstate.edu/~hetheriw/energy/topics/doc/electrochemistry/fc/basic/The_Polymer_Electrolyte_Fuel_Cell.htm

10- Mohamed Becherif, Aïcha Saadi, Daniel Hissel, Abdennacer Aboubou, Mohamed Yacine Ayad. 2011. "Static and dynamic proton exchange membrane fuel cell models." Journal of Hydrocarbons Mines and Environmental Research 2 (1)

Cite

If you use OPEM in your research , please cite this paper :

@article{Haghighi2018,
  doi = {10.21105/joss.00676},
  url = {https://doi.org/10.21105/joss.00676},
  year  = {2018},
  month = {jul},
  publisher = {The Open Journal},
  volume = {3},
  number = {27},
  pages = {676},
  author = {Sepand Haghighi and Kasra Askari and Sarmin Hamidi and Mohammad Mahdi Rahimi},
  title = {{OPEM} : Open Source {PEM} Cell Simulation Tool},
  journal = {Journal of Open Source Software}
}

Download OPEM.bib (BibTeX Format)

JOSS Zenodo Researchgate

License

Donate to our project

Bitcoin :

12Xm1qL4MXYWiY9sRMoa3VpfTfw6su3vNq

Payping (For Iranian citizens) :

iQrMfyI.png!web

Say Thanks!


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK