50

[译] TCP的SYN队列和Accept队列

 5 years ago
source link: https://www.tuicool.com/articles/MvYBZvI
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

QJBbYjY.jpg!web

首先我们必须明白,处于“LISTENING”状态的TCP socket,有两个独立的队列:

  • SYN队列(SYN Queue)
  • Accept队列(Accept Queue)

这两个术语有时也被称为“reqsk_queue”,“ACK backlog”,“listen backlog”,甚至“TCP backlog”,但是这篇文章中我们使用上面两个术语以免造成混淆。

SYN队列

SYN队列存储了收到SYN包的连接(对应内核代码的结构体: struct inet_request_sock )。它的职责是回复SYN+ACK包,并且在没有收到ACK包时重传,直到超时。在Linux下,重传的次数为:

$ sysctl net.ipv4.tcp_synack_retries
net.ipv4.tcp_synack_retries = 5

文档中对 tcp_synack_retries 的描述如下:

tcp_synack_retries - int整型

	对于一个被动TCP连接,重传SYNACKs的次数。该值不能超过255。
	默认值为5,如果初始RTO是1秒,那么对应的最后一次重传是31秒。
	对应的最后一次超时是63秒之后。

发送完SYN+ACK之后,SYN队列等待从客户端发出的ACK包(也即三次握手的最后一个包)。当收到ACK包时,首先找到对应的SYN队列,再在对应的SYN队列中检查相关的数据看是否匹配,如果匹配,内核将该连接相关的数据从SYN队列中移除,创建一个完整的连接(对应内核代码的结构体: struct inet_sock ),并将这个连接加入Accept队列。

Accept队列

Accept队列中存放的是已建立好的连接,也即等待被上层应用程序取走的连接。当进程调用accept(),这个socket从队列中取出,传递给上层应用程序。

这就是Linux处理SYN包的一个简单描述。 顺便一提,当socket开启了 TCP_DEFER_ACCEPTTCP_FASTOPEN 时,工作方式将会有细微不同,本文不做介绍。

队列大小限制

应用程序通过调用系统调用listen(2),传入backlog参数,来设置SYN队列和Accept队列的最大大小。比如下面这样,将SYN队列和Accept队列的最大大小同时设置为1024:

listen(sfd, 1024)

注意,在4.3版本之前的内核,SYN队列的大小是用另一种方式计算。

SYN队列的最大大小以前是用 net.ipv4.tcp_max_syn_backlog 来配置,但是现在已经不再使用了。现在用 net.core.somaxconn 来同时表示SYN队列和Accept队列的最大大小。在我们的服务器上,我们将它设置为16k:

$ sysctl net.core.somaxconn
net.core.somaxconn = 16384

队列设置为多大合适

知道了上面这些信息后,你可能会问,队列设置为多大合适?

答案是:看情况。对于大多数的TCP服务来说,这并不太重要。比如,Go语言1.11版本之前,并没有提供设置队列大小的方法。

尽管如此,也存在一些合理的原因,需要增大队列的大小:

  • 当建立连接的请求速度确实很大时,即使是对于一个高性能的服务来说,SYN队列也可能需要设置的大一些。
  • SYN队列的大小,换言之就是等待ACK包的连接数。也即与客户端的平均往返时间越大,堆积在SYN队列中的连接就越多。对于那些大部分客户端都距离服务器很远的场景,比如说往返时间几百毫秒以上,可以将队列大小设置的大一些。
  • TCP_DEFER_ACCEPT 选项如果打开了,会导致socket在 SYN-RECV 状态下维持更长的时间,也即增大了处于SYN队列中的时间。

但是,将backlog设置的过大也会带来不好的影响:

  • SYN队列中的每一个槽位都需要占用一些内存。当遇到SYN Flood攻击时,我们没有必要为这些发起攻击的包浪费资源。SYN队列中的 inet_request_sock 结构体,在4.14内核下,每个将占用256字节的内存。

linux下,如果想查看SYN队列的当前状态,我们可以使用ss命令来查询 SYN-RECV 状态的socket。比如如下执行结果,表示80端口的SYN队列中当前有119个元素,443端口则为78。

$ ss -n state syn-recv sport = :80 | wc -l
119
$ ss -n state syn-recv sport = :443 | wc -l
78

还可以通过我们的SystemTap脚本来观察这个数据: resq.stp

假如程序调用accept()不够快?

zMf2Qvv.jpg!web

如果程序调用accept()不够快会发生什么呢?

TcpExtListenOverflows / LINUX_MIB_LISTENOVERFLOWS
TcpExtListenDrops / LINUX_MIB_LISTENDROPS

发生这种情况时,我们只能寄希望于程序的处理性能稍后能恢复正常,客户端重新发送被服务端丢弃的包。

内核的这种表现对于大部分服务来说是可接受的。 顺便一提,可以通过调整 net.ipv4.tcp_abort_on_overflow 这个全局参数来修改这种表现,但是最好还是不要改这个参数。

可以通过查看nstat的计数来观察Accept队列溢出的状态:

$ nstat -az TcpExtListenDrops
TcpExtListenDrops     49199     0.0

但是这是一个全局的计数。观察起来不够直观,比如有时我们观察到它在增长,但是所有的服务程序看起来都是正常的。此时我们可以使用ss命令来观察单个监听端口的Accept队列大小:

$ ss -plnt sport = :6443|cat
State   Recv-Q Send-Q  Local Address:Port  Peer Address:Port
LISTEN  0      1024                *:6443             *:*

Recv-Q 这一列显示的是处于Accept队列中的socket数量, Send-Q 显示的是队列的最大大小。在上面的例子中,我们发现并没有未被程序accept()的socket,但是我们依然发现ListenDrops计数在增长。

这是因为我们的程序只是周期性的短暂卡住不处理新的连接,而非永久性的不处理,过段时间程序又恢复了正常。这种情况下,用ss命令比较难观察这种现象,因此我们写了一个 SystemTap脚本 ,它会hook进内核,把被丢弃的SYN包打印出来:

$ sudo stap -v acceptq.stp
time (us)        acceptq qmax  local addr    remote_addr
1495634198449075  1025   1024  0.0.0.0:6443  10.0.1.92:28585
1495634198449253  1025   1024  0.0.0.0:6443  10.0.1.92:50500
1495634198450062  1025   1024  0.0.0.0:6443  10.0.1.92:65434
...

通过上面的操作,可以观察到哪些SYN包被ListenDrops影响了。从而我们也就可以知道哪些程序在丢失连接。

英文原文来自cloudflare的博客,地址如下:

SYN packet handling in the wild

英文原文在后半部分还介绍了SYN Cookies对于SYN Flood的影响,我在本文中没有翻译,感兴趣的可以看看原文。

本文原始地址: https://pengrl.com/p/46323/

声明:本文后续所有修改都会第一时间在原始地址更新。本文欢迎任何形式转载,转载时注明原始出处即可。


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK