50

高并发之限流,到底限的什么鬼 (精品长文)

 4 years ago
source link: https://www.tuicool.com/articles/UVNRban
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

e6JBVrU.gif你可能知道高并发系统需要限流这个东西,但具体是限制的什么,该如何去做,还是临摹两可。 我们接下来系统性的给它归个小类,希望对你有所帮助。

google guava中提供了一个限流实现: RateLimiter,这个类设计的非常精巧,可以适用于我们日常业务中大多数 流控 的场景,但鉴于使用场景的多样性,使用时也需要相当小心。

这次不同。本篇文章将详细的,深入的介绍限流的各种场景和属性,然后分析guava这个限流器的核心源码,并对其特性进行总结。属于稍高级的进阶篇。

限流场景

弄清楚你要限制的资源,是这个过程中最重要的一环。我大体将它分为三类。

rYrAfmF.jpg!web

代理层

比如SLB、nginx或者业务层gateway等,都支持限流,通常是基于 连接数 (或者并发数)、 请求数 进行限流。限流的维度通常是基于比如IP地址、资源位置、用户标志等。更进一步,还可以根据自身负载情况动态调整限流的策略(基准)。

服务调用者

服务调用方,也可以叫做本地限流,客户端可以限制某个远端服务的调用速度,超过阈值,可以直接进行阻塞或者拒绝,是限流的 协作方

服务接收方

基本同上,流量超过系统承载能力时,会直接拒绝服务。通常基于应用本身的可靠性考虑,属于限流的 主体方 。我们常说的限流,一般发生在此处。本文主要结合RateLimiter讨论基于限流主体方的使用方式,其他的都类似。

限流策略

限流策略有时候很简单,有时候又很复杂,但常见的就三种。其他的都是在这之上进行的改进和扩展。

RNbmiav.jpg!web

根据并发级别限流

这是一种简单的、易于实施的限流方式,可以使用我们前面提到的java信号量实现。它的使用场景也有着比较鲜明的特点:

1)每次请求,所需要的资源开支都比较均衡,比如,每个请求对CPU的消耗、IO消耗等,都差不多,请求的RT时间都基本接近。

2) 请求密度或稀疏或高频,这个我们不去关注。

3)资源本身不需要繁琐的初始化工作( 预热 ),或者初始化工作的开支可以忽略。(会增加复杂度)

4)对待流量溢出的策略比较简单,通常是 直接拒绝 而不是等待,因为等待往往意味着故障。

这种策略通常在适用在流量的顶层组件上,比如代理层、中间件等对并发连接数的限制。而尝试获取凭证的超时时间,就叫做 溢出等待 。很上档次很装b的词,对不对?

漏桶算法

请求流量以不确定速率申请资源,程序处理以恒定的速率进行,就是漏桶算法的基本原理。有点像制作冰激凌的过程。-.- 有关漏桶模型,大家可以去研究一下相关资料。

大体有以下几个概念。

桶 buffer

请求首先尝试进入队列,如果队列溢满,则拒绝此请求。进入队列以后,请求则等待执行。

由此可见,请求究竟何时被执行,还存在一些变数,这直接取决于队列中pending的请求数。有时候,挑剔的设计者会考虑增加有关限制请求等待的时间阈值,这个时间就是请求入队、出队的最大时差。buffer的大小设计,通常与速率有直接关系。

漏:请求出队

这个出队,有些讲究,不同的设计理念实现就有所不同。有 抢占式 、有 调度式 。其中“抢占式”就是处理线程(或者进程,比如nginx worker进程)在上一个请求处理完毕之后即从buffer队列中poll新的请求,无论当前线程(或者进程)的处理速率是否超过设定的速率,这种策略下buffer大小就限定了速率的上限。

调度式,就比较易于理解,需要额外的调度线程(进程),并严格按照设定的速率,从buffer中获取请求,并轮训的方式将请求交给其他worker线程,如果已有的worker线程繁忙,则直接创建新线程,目的就是确保速率是有保障的,这种方式下,buffer大小主要取决于等待时间。

溢出

就是因为漏桶的速率限制比较稳定,所以其面临流量突发(bursty)几乎没有应对能力,简单来说,超出buffer,就直接拒绝。

多么可怜的请求们。

流量突发

尽管buffer的设计在一定层面上兼顾流量突发,但是还是太脆弱了,比如某个瞬间,请求密度很高(最尴尬的就是,只大了一点),将buffer溢满,或许buffer再“大一点点”就能够在合理时间内被处理;对于请求方,就会有些迷惑,“我只不过是稍微超了一点,你就给了我一连串无法工作的信息,so nave!!!”。

这种策略,也很常用,但是通常适用在限流的协作方,也是就客户端层面。请求发出之前,做流控,如果有溢出,就要用其他可靠的策略来保障结果,比如重试等;反正 “对面的服务压垮了,别怪我,我很自律”。

令牌桶

设计模型,我就不再介绍,大家可以去wiki深入了解一下。

令牌桶的基本思想,跟老一辈的集体公社时代一样,每个月的供销是限额的,有资源才分配给个人,不足部分下个月再说,你可以排队赊账。

令牌的个数,就是可以允许获取资源的请求个数(我们假设每个请求只需要一个令牌)。事实上,我们并不会真的去创建令牌实体,因为这是没有必要的,我们使用带有时间特征的计数器来表示令牌的可用个数即可。跟漏桶算法相比,令牌桶的“桶”不是用来buffer请求的、而是用来计量可用资源数量(令牌)的。虽然我们并不会创建令牌实体,但是仍然可以假想,这个桶内每隔X时间就会新增一定数量的令牌,如果没有请求申请令牌,那么这个令牌桶是会溢出的…你会发现,这个设计跟漏桶算法从IO方向上是相反的。

那么漏桶算法的缺点,也正好成为了令牌桶的专长:流量突发;令牌桶成了buffer,如果请求密度低,或者处于冷却状态,那么令牌桶就会溢满,此后如果流量突发,则过去积累的结余资源则可以直接被“借用”。

令牌桶算法,使用场景很多,适应程度很高,现实中流量突发是常见的,而且从设计角度考虑,令牌桶更易于实现。回到正题,RateLimiter,就是一个基于令牌桶思想的实现。

我们的口子越缩越小,终于到正题了。

RateLimiter使用

guava的api已经把它的设计思想阐述的比较清楚了,但是这个注释阅读起来还是稍微有点“哲学派”,我们先看两个栗子,然后从源码层面看下它的设计原理。

//RateLimiter limiter = RateLimiter.create(10,2, TimeUnit.SECONDS);//QPS 100
RateLimiter limiter = RateLimiter.create(10);
long start = System.currentTimeMillis();
for (int i= 0; i < 30; i++) {
    double time = limiter.acquire();
    long after = System.currentTimeMillis() - start;
    if (time > 0D) {
        System.out.println(i + ",limited,等待:" + time + ",已开始" + after + "毫秒");
    } else {
        System.out.println(i + ",enough" + ",已开始" + after + "毫秒");
    }
    //模拟冷却时间,下一次loop可以认为是bursty开始
    if (i == 9) {
        Thread.sleep(2000);
    }
}
System.out.println("total time:" + (System.currentTimeMillis() - start));

此例为简单的流控,只有一种资源,QPS为 10 ;在实际业务场景中,可能不同的资源速率是不同的,我们可以创建N多个limeter各自服务于资源。

acquire()方法就是获取一个令牌(源码中使用permit,许可证),如果permit足够,则直接返回而无需等待,如果不足,则等待1/QPS秒。

此外,你会发现, limiter并没有类似于锁机制中的release()方法 ,这意味着“只要申请,总会成功”、且退出时也无需归还。

RateLimiter内部有两种实现:(下文中,“资源”、“令牌”、“permits”为同一含义)

SmoothBursty

可以支持“突发流量”的限流器,即当限流器不被使用时间,可以额外存储一些permits以备突发流量,当突发流量发生时可以更快更充分的使用资源,流量平稳后(或者冷却期,积累的permits被使用完之后)速率处于限制状态。

其重点就是,冷却期间,permits会积累,且在突发流量时,可以消耗此前积累的permits而且无需任何等待。就像一个人,奔跑之后休息一段时间,再次起步可以有更高的速度。

由此可见,如果你的资源,冷却(不被使用)一段时间之后,再次被使用时可以提供比正常更高的效率,这个时候,你可以使用SmoothBursty。

创建方式

RateLimiter.create(double permitsPerSecond)

结果类似

0,enough,已开始1毫秒
1,limited,等待:0.098623,已开始105毫秒
2,limited,等待:0.093421,已开始202毫秒
3,limited,等待:0.098287,已开始304毫秒
4,limited,等待:0.096025,已开始401毫秒
5,limited,等待:0.098969,已开始505毫秒
6,limited,等待:0.094892,已开始605毫秒
7,limited,等待:0.094945,已开始701毫秒
8,limited,等待:0.099145,已开始801毫秒
9,limited,等待:0.09886,已开始905毫秒
10,enough,已开始2908毫秒
11,enough,已开始2908毫秒
12,enough,已开始2908毫秒
13,enough,已开始2908毫秒
14,enough,已开始2908毫秒
15,enough,已开始2908毫秒
16,enough,已开始2908毫秒
17,enough,已开始2908毫秒
18,enough,已开始2908毫秒
19,enough,已开始2908毫秒
20,enough,已开始2909毫秒
21,limited,等待:0.099283,已开始3011毫秒
22,limited,等待:0.096308,已开始3108毫秒
23,limited,等待:0.099389,已开始3211毫秒
24,limited,等待:0.096674,已开始3313毫秒
25,limited,等待:0.094783,已开始3411毫秒
26,limited,等待:0.097161,已开始3508毫秒
27,limited,等待:0.099877,已开始3610毫秒
28,limited,等待:0.097551,已开始3713毫秒
29,limited,等待:0.094606,已开始3809毫秒
total time:3809

SmoothWarmingUp

具有warming up(预热)特性,即突发流量发生时,不能立即达到最大速率,而是需要指定的“预热时间”内逐步上升最终达到阈值;它的设计哲学,与SmoothBursty相反,当突发流量发生时,以可控的慢速、逐步使用资源(直到最高速率),流量平稳后速率处于限制状态。

其重点是,资源一直被使用,那么它可以持续限制稳定的速率;否则,冷却时间越长(有效时长为warmup间隔)获取permits时等待的时间越长,需要注意,冷却时间会积累permits,但是获取这些permits仍然需要等待。

由此可见,如果你的资源,冷却(不被使用)一段时间之后,再次被使用时它需要一定的准备工作,此时它所能提供的效率比正常要低;比如链接池、数据库缓存等。

创建方式

RateLimiter.create(double permitsPerSecond,long warnupPeriod,TimeUnit unit)

执行结果如下,可以看到有一个明显的增长过程。

0,enough,已开始1毫秒
1,limited,等待:0.288847,已开始295毫秒
2,limited,等待:0.263403,已开始562毫秒
3,limited,等待:0.247548,已开始813毫秒
4,limited,等待:0.226932,已开始1041毫秒
5,limited,等待:0.208087,已开始1250毫秒
6,limited,等待:0.189501,已开始1444毫秒
7,limited,等待:0.165301,已开始1614毫秒
8,limited,等待:0.145779,已开始1761毫秒
9,limited,等待:0.128851,已开始1891毫秒
10,enough,已开始3895毫秒
11,limited,等待:0.289809,已开始4190毫秒
12,limited,等待:0.264528,已开始4458毫秒
13,limited,等待:0.247363,已开始4710毫秒
14,limited,等待:0.225157,已开始4939毫秒
15,limited,等待:0.206337,已开始5146毫秒
16,limited,等待:0.189213,已开始5337毫秒
17,limited,等待:0.167642,已开始5510毫秒
18,limited,等待:0.145383,已开始5660毫秒
19,limited,等待:0.125097,已开始5786毫秒
20,limited,等待:0.109232,已开始5898毫秒
21,limited,等待:0.096613,已开始5999毫秒
22,limited,等待:0.096321,已开始6098毫秒
23,limited,等待:0.097558,已开始6200毫秒
24,limited,等待:0.095132,已开始6299毫秒
25,limited,等待:0.095495,已开始6399毫秒
26,limited,等待:0.096352,已开始6496毫秒
27,limited,等待:0.098641,已开始6597毫秒
28,limited,等待:0.097883,已开始6697毫秒
29,limited,等待:0.09839,已开始6798毫秒
total time:6798

acquire方法源码分析

上面两个类都继承自SmoothRateLimiter,最终继承自RateLimiter;RateLimiter内部核心的方法:

1)double acquire():获取一个permit,如果permits充足则直接返回,否则等待1/QPS秒。此方法返回线程等待的时间(秒),如果返回0.0表示未限流、未等待。

2)double acquire(int n):获取n个permits,如果permits充足则直接返回,否则限流并等待,等待时间为“不足的permits个数 / QPS”。(暂且这么解释)

下面就是这个方法的伪代码啦。

//伪代码
public double acquire(int requiredPermits) {
    long waitTime = 0L;
    synchronized(mutex) {
          boolean cold = nextTicketTime > now;
          if (cold) {
             storedPermits = 根据冷却时长计算累积的permits;
             nextTicketTime = now;
          }
          //根据storedPermits、requiredPermits计算需要等待的时间
          //bursty:如果storePermits足够,则waitTime = 0
          //warmup:平滑预热,storePermits越多(即冷却时间越长),等待时间越长
          if(storedPermits不足) {
              waitTime += 欠缺的permits个数 / QPS;
          }
          if(bursty限流) {
              waitTime += 0;//即无需额外等待
          }
          if(warmup限流) {
              waitTime += requiredPermits / QPS;
              if(storedPermits > 0.5 * maxPermits) {
                waitTime += 阻尼时间;
              }
          }

          nextTicketTime += waitTime
    }
    if (waitTime > 0L) {
      Thread.sleep(waitTime);
    }
    return waitTime;
}

以下内容会比较枯燥~~~非常枯燥~~~

1、Object mutex:同步锁,如上述伪代码所示,在计算存量permits、实际申请permits(包括计算)的过程中全部是同步的;我们需要知道,RateLimiter内部确实使用了锁同步机制。

2、maxPermits:最大可存储的许可数量(tickets数量),SmoothBursty和SmoothWarimingUp默认实现中,有所不同:

1)SmoothBusty,其值为maxBurstSecond QPS,就是允许“突发流量持续时间” QPS,这种设计可以理解,不过RateLimiter将maxBustSecond硬编码为1.0,最终此值等于QPS。

2)SmoothWarmingUp:默认算法值为warmupPeriod QPS,简单说就是“预热时长” QPS。

此参数主要限制,无论冷却多长时间,其storedPermits不能超过此值;此值在设定QPS之后,则不会再改变。

3、storedPermits:已存储的permits数量,此值取决于冷却时间,简单来说冷却的时间越久,此值越大,但不会超过maxPermits,起始值为0。

1)当一个请求,申请permit之前,将会计算上一次令牌申请(nexFreeTicketTime)的时间与now之间的时差,并根据令牌产生速率(1/QPS)计算此冷却期间可以存储的令牌数,也就是storedPermits。

2)permits申请完毕之后,将当前时间(如果需要等待,额外加上等待时间)作为下一次令牌申请的起始时间,此时冷却时间结束。

3)申请完毕之后,storedPermits将会减去申请的permits个数,直到为0。

冷却时长和申请频次,都决定了storedPermits大小,其中冷却时间会导致storePermits增加,acquire操作将导致storePermits减少。

4、nextFreeTicketMicros(时间戳,微妙单位):下一个可以自由获取的令牌的时间,此值可以为未来的某个时间,此时表示限流已经开始,部分请求已经在等待,此值主要用来标记“冷却状态”。(赊账)

1)如果处于冷却期,那么此值通常是过去式,即此值小于now。

2)如果此时有请求申请permits,则会通过此值与now的时差,计算storedPermits,同时将此值设置为now。

3)如果此值是未来时刻,即大于now,则无需计算storedPermits,也无需重置此值。

4)申请tickets后,从storedPermits减去需要的tickets个数,如果触发限速等待(比如预热期、permits不足),则会将2)操作之后额外增加等待时间作为nextFreeTicketsTime值。

5)基于2),对于warmingUp限流,冷却期之后的首个请求是不需要等待的,只是将此值设置为now + 阻尼性质的等待时间waitTime(),这意味着在此后waitTime期间再有请求,则会触发等待,并继续延续nextFreeTicketMicros值。此值的延续,在warming up期间,阻尼waitTime计算比较复杂,由1/QPS + 额外值,这个额外值,随着预热时间增长而减小。

6)基于2),对于bursty限流,如果storedPermits大于0,则总是不需要等待,只是简单将此值设为为now;否则,则按照正常的1/QPS间隔计算其应该被推延的时间点。

5、对于warming up限流,将maxPermits * 0.5作为一个阈值分割线,当storedPermits小于此分割线时,在限流时使用正常等待时间(申请permits个数 / QPS);在此分割线之上时,则4)增加额外阻尼,即预热阻尼。

6、我们发现,RateLimiter内部并不会真的生成tickets实体,而是根据冷却时长、在申请资源时才计算存量tickets(对应为storedPermits)。无论何种限流,storedPermits都是优先使用。

小总结

是时候总结一下了。

RateLimiter是线程安全的,所以在并发环境中可以直接使用,而无需额外的lock或者同步。

考虑到RateLimiter内部的同步锁,我们通常在实际业务开发中,每个资源(比如URL)使用各自的RateLimiter而不是公用一个,占用的内存也不大。

这个限流器内部无额外的线程,也没有其他的数据结构用来存储tickets实体,所以它非常的轻量级,这也是优势所在。

RateLimiter最大的问题,就是acquire方法总会成功,内部的tickets时间点会向后推移;如果并发很高,严重超过rate阈值时,后续被限流的请求,其等待时间将会基于时间线累加,导致等待时间不可控,这和信号量同病相怜。

为了避免上面的问题,我们通常先使用tryAcquired检测,如果可行再去acquire;如果令牌不足,适当拒绝。所以 基于RateLimiter,并没有内置的拒绝策略,这一点需要我们额外开发。

我们不能简单依赖于acquire方法,来实现限流等待,否则这可能带来严重问题。我们通常需要封装RateLimiter,并使用额外的属性记录其是否“处于限流状态”、“已经推延的tickets时间点”,如果“已经推延的时间点非常遥远”且超过可接受范围,则直接拒绝请求。简单来说,封装acquire方法,增加对请求可能等待时间的判断,如果超长,则直接拒绝。

RateLimiter存在一个很大的问题,就是几乎没法扩展:子类均为protected。反射除外哦。

一个实践

还是上一段代码吧,能更加清晰的看到我们所做的工作:FollowCotroller.java:流控器,如果限流开始,则只能有max个请求因此而等待,超过此值则直接拒绝

public class FollowController {

    private final RateLimiter rateLimiter;

    private int maxPermits;

    private Object mutex = new Object();

    //等待获取permits的请求个数,原则上可以通过maxPermits推算
    private int maxWaitingRequests;

    private AtomicInteger waitingRequests = new AtomicInteger(0);

    public FollowController(int maxPermits,int maxWaitingRequests) {
        this.maxPermits = maxPermits;
        this.maxWaitingRequests = maxWaitingRequests;
        rateLimiter = RateLimiter.create(maxPermits);
    }

    public FollowController(int permits,long warmUpPeriodAsSecond,int maxWaitingRequests) {
        this.maxPermits = maxPermits;
        this.maxWaitingRequests = maxWaitingRequests;
        rateLimiter = RateLimiter.create(permits,warmUpPeriodAsSecond, TimeUnit.SECONDS);
    }

    public boolean acquire() {
        return acquire(1);
    }

    public boolean acquire(int permits) {
        boolean success = rateLimiter.tryAcquire(permits);
        if (success) {
            rateLimiter.acquire(permits);//可能有出入
            return true;
        }
        if (waitingRequests.get() > maxWaitingRequests) {
            return false;
        }
        waitingRequests.getAndAdd(permits);
        rateLimiter.acquire(permits);

        waitingRequests.getAndAdd(0 - permits);
        return true;
    }

}

以上代码,都可以在github找到。

https://github.com/sayhiai/example-ratelimit

End

可以看到,guava提供了一个非常轻量而全面的限流器。它本身没有使用多线程去实现,但它是线程安全的。相比较信号量,它的使用简单的多。但鉴于限流场景的多样性,使用时同样要非常小心。

更多精彩文章


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK