17

别人家的高中生:入大学前,Ta详细梳理了GAN的发展脉络

 4 years ago
source link: https://www.tuicool.com/articles/m2uuEna
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

昨天,reddit 上出现了一个关于梳理 GAN 发展脉络的博客,作者在博客中详细梳理了过去几年的 GAN 发展历程,包含众多 SOTA 论文及其代码和对应的学习资源。难能可贵的是,博客作者三月份才刚高中毕业,然后利用上大学之前的时间完成了这篇文章。

目前,作者已被伊利诺伊大学香槟分校(University of Illinois at Urbana-Champaign)录取并将于今年秋天入学。

如果你是一名 GAN 的入门学习者,那么这份材料可以帮你迅速理 GAN 发布以来的研究进展。

博客地址:https://blog.floydhub.com/gans-story-so-far/

作者在梳理过程中发现,GAN 的确是一个发展迅速的领域,短短五年就从模糊的灰度像素阵列发展到高度逼真的生成图像,让人无法一眼识别是真是假。

但领域越火,「水」论文的人可能就越多,因此从众多所谓「SOTA」论文中挑出真正做出实质性改进的「SOTA」就显得非常有必要。

一位读者在看完博客后表示,「比起那些最新 SOTA 文章,我更欣赏这种回顾性质的 SOTA 梳理……经常有人抱怨说,有些人只是对 GAN 进行了微小的调整,在 SOTA 基础上前进了一小步,然后就把论文发出去了,并声称『这是最新的 SOTA!』。这其实只是对别人研究的一种重复。因此,如果有更多这种 SOTA 的回顾性文章,就可以过滤掉那些水论文。通过这种回顾可以更加容易地评价那些新出现的研究。」

从 GAN 到 StyleGAN

首先,作者以发展路线图的形式梳理了这几年出现的比较有影响力的 GAN,从最初的 Goodfellow 版 GAN 到近来大火的 BigGAN、StyleGAN 等,博客的后续内容也是按照这张图的顺序进行的。

aAr6Zrv.png!web

GAN 路线图。

Goodfellow 版 GAN

GAN 是由 Goodfellow 等人于 2014 年提出的(目前公认的说法)。其基本思想可以概括为:

GAN 包含两个神经网络,一个神经网络尝试生成真实的数据(主要是图片,也可能是其他数据的分布),而另一个网络尝试判别真实的和生成的数据。

IFBvy2u.png!web

标准的生成对抗网络结构。

这场「猫捉老鼠」的游戏会一直继续下去,直到系统达到所谓的「平衡」,即生成器生成的数据以假乱真到判别器无法判别。

n2IjQz6.png!web

Goodfellow 等人 2014 年提出的 GAN 生成的图像。

  • 论文地址:https://arxiv.org/abs/1406.2661

  • 代码实现地址:https://github.com/goodfeli/adversarial

  • 其他资源:https://arxiv.org/abs/1701.00160

DCGAN: 深度卷积生成对抗网络

DCGAN 的思路可以简单概括为:

  • 卷积神经网络=处理图像效果好

  • 生成对抗网络=生成数据效果好

  • ⟹卷积神经网络+生成对抗网络=生成图像效果好

标准的 GAN 使用 多层感知机 作为网络结构。但是考虑到卷积神经网络在获取图像特征方面的效果,DCGAN 采用了它作为主要网络结构。同时,DCGAN 稍微做了一些调整,使用了转置卷积操作(transposed convolution operation),它的另一个名字是 Deconvolution。转置卷积帮助图像从低清晰度向高清晰度转换,同样的,采用多层转置卷积可以使图像变得生动多彩。

rURvMvA.png!web

卷积核的工作原理。通过卷积方式将稀疏的图像矩阵转换为密集矩阵。

y63Q3uv.png!web

DCGAN 生成的图片。较 GAN 更清晰,有更多色彩。

  • 论文地址:https://arxiv.org/abs/1511.06434

  • 代码实现地址:https://github.com/floydhub/dcgan

  • 其他资源:https://towardsdatascience.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

CGAN: 条件生成对抗网络

原始的 GAN 从噪声中生成图片。因此,如果训练的是一类图(例如,狗),其能生成这一类图片。但是,如果训练中同时有很多类(例如,狗和猫都有)图片,则生成的图片是这些图片模糊的混合。而 CGAN 可以让用户指定生成的图片分类。

具体的,CGAN 将 one-hot 向量 y 和随机噪声向量 z 拼接,组成如下的结构:

ZZjAVjy.png!web

BZjeemU.png!web

使用 CGAN 可以生成指定的 MNIST 数字。

  • 论文地址:https://arxiv.org/abs/1411.1784 (https://arxiv.org/abs/1511.06434)

  • 代码实现地址:https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras (https://github.com/floydhub/dcgan)

  • 其他资源:https://wiseodd.github.io/techblog/2016/12/24/conditional-gan-tensorflow/

CycleGAN

fqquIfz.png!web

利用 GAN 变体CycleGAN进行风格迁移。

GAN 不仅可以用来生成图像,还可以创造「马+斑马」这种叠加效果的图像,CycleGAN解决的就是这种问题,即图像到图像的转换。

CycleGAN 包含两个生成器(G 和 F)和两个判别器(D_X 和 D_Y)。G 从 X 中得到一张图像,并尝试将其映射到 Y 中的某个图像。判别器 D_Y 预测一张图像究竟是由 G 生成的还是 Y 中的真实图像。

F 也进行类似的操作,即从 Y 中得到一张图像,并尝试将其映射到 X 中的某个图像。判别器 D_X 预测一张图像究竟是由 F 生成的还是 X 中的真实图像。

所有四个网络都是用普通 GAN 的方式训练的,直到得到强大的生成器 G 和 F,生成的图像分别骗过 D_X 和 D_Y。

6FvUVzY.png!web

CycleGAN的结构。

JNj67ju.png!web

利用CycleGAN将画家的画风移植到照片上。

  • 论文地址:https://arxiv.org/abs/1703.10593v6

  • 代码实现地址:https://github.com/junyanz/CycleGAN

CoGAN:成对(Coupled)生成对抗网络

想要更好的结果?为什么不试试两个 GAN?

CoGAN 的原作者这样解释:

「在这个系统中,有两个队伍,每个队伍有两个队员。生成模型是其中一个队,生成一个不属于一类图片的图片对来迷惑判别器队。判别器队尝试将图片的类,以及是否是训练数据或生成数据都判别出来。两个队伍共享权重。」

6B32mub.png!web

CoGAN 的结构。

ZF3uqim.png!web

CoGAN 的效果。相比 DCGAN 清晰度更高,更为真实。

  • 论文地址:https://arxiv.org/abs/1606.07536

  • 代码实现地址:https://github.com/mingyuliutw/CoGAN

  • 其他资源:https://wiseodd.github.io/techblog/2017/02/18/coupled_gan/

ProGAN

训练 GAN 有很多问题,其中最大的问题是训练的不稳定性。

有时候,判别器和生成器无法从彼此学习数据。有时候,生成的图片变得非常奇怪。

ProGAN 可以通过逐层提高生成图片的分辨率来用来稳定 GAN 的训练。

这一逻辑是:生成 4x4 的图片比生成 1024x1024 图片要更简单。同时,从 16x16 的图片映射到 32x32 比从 2x2 的图片映射更容易。

因此 ProGAN 首先训练一个 4x4 的生成器和一个 4x4 的判别器,并在训练进程中逐渐增加层数,提高分辨率。

73aQvab.gif

ProGAN 逐渐加深训练的过程。随着网络层数变深,图像越来越清晰。

  • 论文地址:https://arxiv.org/abs/1710.10196

  • 代码实现地址:https://github.com/tkarras/progressive_growing_of_gans

WGAN:Wasserstein生成对抗网络

WGAN中的「W」指的是 Wasserstein。WGAN提出了一种新的代价函数。

过去 GAN 的 minimax目标函数

ERFv2qR.png!web

而WGAN使用:

mIRfie7.png!web

6nmm6vV.png!web

GAN 的判别器和WGAN的判别器在学习区分高斯分布数据的情况。GAN 可能会出现梯度消失,但WGAN在空间内始终保持稳健的梯度变化。

新的代价函数在数学上可以防止梯度消失的情况,因此具有更好的训练稳定性。

7vYZZjM.png!web

WGAN(左)和 DCGAN(右)生成房子图片的效果对比。WGAN更稳健,出错更少。

  • 论文地址:https://arxiv.org/abs/1701.07875v3

  • 代码实现地址:https://github.com/eriklindernoren/Keras-GAN

SAGAN:自注意力生成对抗网络

虽然使用转置卷积的 GAN 可以「扫描」图片的特征映射,但是其只能获得附近的信息。

SAGAN 使用自注意力机制,在全局图像中关注需要注意的特征信息。

QNvQneN.png!web

SAGAN 使用注意力机制,高亮部位为注意力机制关注的位置。

  • 论文地址:https://arxiv.org/abs/1805.08318v1

  • 代码实现地址:https://github.com/heykeetae/Self-Attention-GAN

BigGAN:大型生成对抗网络

BigGAN 由DeepMind提出,由于生成效果高度逼真而被誉为「史上最强 GAN图像生成器」。

DeepMind在研究 GAN 时尝试了前无古人的事情。他们用强大的深度学习技术训练 GAN 的网络。

NbMZNzf.gif

首先,DeepMind使用 SAGAN 作为基线,并添加了光谱特征作为输入。其次,他们将批大小提升了 50%,通道数提升了 20%。同时,研究人员使用了截断方法来提升样本的质量。最终,他们在新的数据集 JFT-300 上进行训练,这是一个类似于 ImageNet 的数据集,但是有 3 亿张图片。

INzEzmr.png!web

BigGAN 生成的高清晰图片,包含各种类别。

  • 论文地址:https://arxiv.org/abs/1809.11096v2

  • 代码实现地址:https://github.com/huggingface/pytorch-pretrained-BigGAN

StyleGAN:基于风格的生成对抗网络

StyleGAN 来自英伟达的一项研究,关注的是损失函数、稳定性、架构等。

因此,StyleGAN 没有专注于生成更加逼真的图像,而是致力于提高 GAN 对生成图像的精确控制能力。

为了达到图像风格级别的控制,StyleGAN 使用了适应实例归一化(Adaptive instance normalization)、潜在向量映射网络、不断学习的输入等已有技术。

iaeYNzy.png!web

英伟达 StyleGAN 生成的图像。

  • 论文地址:https://arxiv.org/abs/1812.04948

  • 代码实现地址:https://github.com/NVlabs/stylegan


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK