

CVPR2019| 9篇CVPR论文开源代码(行人检测/物体检测/3D Face等)
source link: https://www.tuicool.com/articles/yYzeiaq
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

加入极市 专业CV交流群,与 6000+来自腾讯,华为,百度,北大,清华,中科院 等名企名校视觉开发者互动交流!更有机会与 李开复老师 等大牛群内互动!
同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流 。 点击文末“ 阅读原文 ”立刻申请入群~
前段时间,计算机视觉顶会CVPR 2019 公布了接收结果,极市也对此做了相关报道: 1300篇!CVPR2019接收结果公布,你中了吗? 。目前官方已公布了接收论文列表,极市已汇总目前公开的所有论文链接及code(目前已更新680篇),今日更新论文如下:
CVPR2019 全部论文汇总:
https://github.com/extreme-assistant/cvpr2019
CVPR2019 论文解读
http://bbs.cvmart.net/topics/287/cvpr201 9
1.Pedestrian Detection with Autoregressive Network Phases
具有自回归网络阶段的行人检测
作者:Garrick Brazil, Xiaoming Liu
https://arxiv.org/abs/1812.00440源码链接: https://github.com/garrickbrazil/AR-Ped
2.MVF-Net: Multi-View 3D Face Morphable Model Regression
MVF-Net:多视图3D面部可变模型回归
作者:Fanzi Wu, Linchao Bao, Yajing Chen, Yonggen Ling, Yibing Song, Songnan Li, King Ngi Ngan, Wei Liu
https://arxiv.org/abs/1904.04473源码链接: https://github.com/Fanziapril/mvfnet
3.Detecting Overfitting of Deep Generators via Latent Recovery
通过潜在恢复检测深度发电机的过度拟合
作者:Ryan Webster, Julien Rabin, Loic Simon, Frederic Jurie
https://arxiv.org/pdf/1901.03396v1.pdf源码链接: https://github.com/ryanwebster90/gen-overfitting-latent-recovery
4.Unsupervised Deep Epipolar Flow for Stationary or Dynamic Scenes
用于静止或动态场景的无监督深度极线流
作者:Yiran Zhong, Pan Ji, Jianyuan Wang, Yuchao Dai, Hongdong Li
https://arxiv.org/pdf/1904.03848v1.pdf源码链接: https://github.com/yiranzhong/EPIflow
5.Isospectralization, or how to hear shape, style, and correspondence
Isospectization,或如何听取形状,风格和通信
作者:Luca Cosmo, Mikhail Panine, Arianna Rampini, Maks Ovsjanikov, Michael M. Bronstein, Emanuele Rodolà
https://arxiv.org/abs/1811.11465v2源码链接: https://github.com/lcosmo/isospectralization
6.Exploring the Bounds of the Utility of Context for Object Detection
探讨用于物体检测的上下文效用的界限
作者:Ehud Barnea, Ohad Ben-Shahar
https://arxiv.org/abs/1711.05471v4源码链接: https://github.com/EhudBarnea/ContextAnalysis
7.Deformable ConvNets v2: More Deformable, Better Results
Deformable ConvNets v2:更加可变形,更好的结果
作者:Xizhou Zhu, Han Hu, Stephen Lin, Jifeng Dai
https://arxiv.org/pdf/1811.11168v2.pdf源码链接: https://github.com/msracver/Deformable-ConvNets
8.From Recognition to Cognition: Visual Commonsense Reasoning(Oral)
从认知到认知:视觉常识推理
作者:Rowan Zellers, Yonatan Bisk, Ali Farhadi, Yejin Choi
https://arxiv.org/pdf/1811.10830v2.pdf源码链接: https://github.com/rowanz/r2c
9.Unsupervised Visual Domain Adaptation: A Deep Max-Margin Gaussian Process Approach(Oral)
Unsupervised Visual Domain Adaptation:深度最大边缘高斯过程方法
作者:Minyoung Kim, Pritish Sahu, Behnam Gholami, Vladimir Pavlovic
https://arxiv.org/pdf/1902.08727.pdfhttps://github.com/seqam-lab/GPDA
*延伸阅读
点击左下角 “ 阅读原文 ”, 即可申请加入极市 目标跟踪、目标检测、工业检测、人脸方向、视觉竞赛等技术交流群, 更有每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流, 一起来让思想之光照的更远吧~
△长按关注极市平台
觉得有用麻烦给个在看啦~
Recommend
-
60
用TensorFlow实现物体检测的像素级分类
-
66
论文地址:https://arxiv.org/abs/1904.02948 代码地址:https://github.com/liuwei16/CSP 简介
-
65
-
18
点击上方“3D视觉工坊”,选择“星标”干货第一时间送达本...
-
42
物体的三维识别与6D位姿估计:PPF系列论文介绍(四) Original...
-
12
物体的三维识别与6D位姿估计:PPF系列论文介绍(三) Original...
-
13
物体三维识别论文介绍——基于霍夫投票 Original...
-
13
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款 圈里有高质量教程资料、可答疑解惑、助你高效解决问题文章“Point Pair Feature-Based Pose Estimation with Multiple Edge Appearance Models (PPF-MEAM) for Robotic Bin Picking”2018年发表在《Sensors》...
-
14
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款 圈里有高质量教程资料、可答疑解惑、助你高效解决问题一、前言近年来随着消费级深度设备的普及,深度相机引导机械臂完成抓取成为热点话题。其中,物体识别与...
-
5
FCOS论文复现:通用物体检测算法 精选 原创 摘要:本案例代码是FCOS论文复现的体验案例,此模型为F...
About Joyk
Aggregate valuable and interesting links.
Joyk means Joy of geeK