56

Sorting Algorithm Cheat Sheet

 5 years ago
source link: https://www.tuicool.com/articles/hit/YB7Bran
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
worst best average space Selection Sort

worst

best

average

space

zEFfM37.png!web

Selection sort works by repeatedly "selecting" the next-smallest element from the unsorted array and moving it to the front.

Full selection sort reference

Insertion Sort

worst

best

average

space

IzAvQ32.png!web

Insertion sort works by inserting elements from an unsorted array into a sorted subsection of the array, one item at a time.

Full insertion sort reference

Merge Sort

worst

best

average

space

QnAzQfb.png!web

Merge sort works by splitting the input in half, recursively sorting each half, and then merging the sorted halves back together.

Full merge sort reference

Quicksort

worst

best

average

space

BbyqArI.png!web

Quicksort works by recursively dividing the input into two smaller arrays around a pivot item: one half has items smaller than the pivot, the other has larger items.

Full quicksort reference

Heapsort

worst

best

average

space

NRNzmuF.png!web

Heapsort is similar to selection sort—we're repeatedly choosing the largest item and moving it to the end of our array. But we use a heap to get the largest item more quickly.

Full heapsort reference

Counting Sort

worst

best

average

space

numUjmN.png!web

Counting sort works by iterating through the input, counting the number of times each item occurs, and using those counts to compute each item's index in the final, sorted array.

Full counting sort reference

Radix Sort

worst

best

average

space

YvQF7n6.png!web

Radix sort works by sorting the input numbers one digit at a time.

Full radix sort reference

Share Tweet Share

Which Sorting Algorithm Should I Use?

It depends. Each algorithm comes with its own set of pros and cons.

  • Quicksort is a good default choice. It tends to be fast in practice, and with some small tweaks its dreadedworst-case time complexity becomes very unlikely. A tried and true favorite.
  • Heapsort is a good choice if you can't tolerate a worst-case time complexity ofor need low space costs. The Linux kernel uses heapsort instead of quicksort for both of those reasons.
  • Merge sort is a good choice if you want a stable sorting algorithm . Also, merge sort can easily be extended to handle data sets that can't fit in RAM, where the bottleneck cost is reading and writing the input on disk, not comparing and swapping individual items.
  • Radix sort looks fast, with itsworst-case time complexity. But, if you're using it to sort binary numbers, then there's a hidden constant factor that's usually 32 or 64 (depending on how many bits your numbers are). That's often way bigger than, meaning radix sort tends to be slow in practice.
  • Counting sort is a good choice in scenarios where there are small number of distinct values to be sorted. This is pretty rare in practice, and counting sort doesn't get much use.

Each sorting algorithm has tradeoffs. You can't have it all.

So you have to know what's important in the problem you're working on. How large is your input? How many distinct values are in your input? How much space overhead is acceptable? Can you affordworst-case runtime?

Once you know what's important, you can pick the sorting algorithm that does it best. Being able to compare different algorithms and weigh their pros and cons is the mark of a strong computer programmer and a definite plus when interviewing.


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK