32

从计算机的角度理解 volatile 关键字

 5 years ago
source link: https://mp.weixin.qq.com/s/l6dbdilAwUhiqNO0O-K9Wg?amp%3Butm_medium=referral
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

极简计算机发展史

我们知道,计算机CPU和内存的交互是最频繁的,内存是我们的高速缓存区。而刚开始用户磁盘和CPU进行交互,CPU运转速度越来越快,磁盘远远跟不上CPU的读写速度,才设计了内存,但是随着CPU的发展,内存的读写速度也远远跟不上CPU的读写速度,因此,为了解决这一矛盾,CPU厂商在每颗CPU上加入了高速缓存,用来缓解这种症状,因此,现在CPU同内存交互就变成了下面的样子。

fAFJVbq.png!web

单核CPU的性能不可能无限制的增长,要想很多的提升新能,需要多个处理器协同工作。 基于高速缓存的存储交互很好的解决了处理器与内存之间的矛盾,也引入了新的问题:缓存一致性问题。在多处理器系统中,每个处理器有自己的高速缓存,而他们又共享同一块内存(下文成主存,main memory 主要内存),当多个处理器运算都涉及到同一块内存区域的时候,就有可能发生缓存不一致的现象。为了解决这一问题,需要各个处理器运行时都遵循一些协议,在运行时需要用这些协议保证数据的一致性。

UBr2qeN.png!web

缓存一致性协议中最出名的就是Intel 的MESI协议,MESI协议保证了每个缓存中使用的共享变量的副本是一致的。它核心的思想是:当CPU写数据时,如果发现操作的变量是共享变量,即在其他CPU中也存在该变量的副本,会发出信号通知其他CPU将该变量的缓存设置为无效状态,因此当其他CPU需要读取这个变量时,发现自己缓存中该变量是无效状态,那么它就会从内存重新读取

Java内存模型

Java的内存模型和上面的结构还是挺相似的,此时在看工作内存和主内存关系,从逻辑上,高速缓存对应工作内存,每个线程分配到CPU时间片时,独自享有高速缓存的使用能力。主内存对应存储的物理内存。特别注意,这只是逻辑上的对等关系,物理的上具体对应关系十分复杂,这里不讨论。

q2iUz2B.png!web

volatile的作用是什么

volatile可以保证可见性,有序性,但不能保证原子性

可见性

可见性是指当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值

假如说有2个线程对一个变量data进行操作,线程先会把主内存中的值缓存到工作内存,这样做的原因和上面提到的高速缓存类似,提高效率

f2AvQjb.png!web

但是这样会引入新的问题,假如说线程A把data修改为1,线程A的工作内存data值为1,但是主内存和线程B的工作内存data值为0,此时就有可能出现Java并发编程中的可见性问题

RF3e2yR.png!web

举个例子,如下面代码,线程A已经将flag的值改变,但是线程B并没有及时的感知到,导致一直进行死循环

public class Test {

    public static boolean flag = false;

    public static void main(String[] args) {

        new Thread(()->{
            while(!flag) {
            }
            System.out.println("threadB end");
        }).start();

        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        new Thread(()->{
            flag = true;
            System.out.println("threadA end");
        }).start();
    }

}

输出为,线程B一直没有结束

threadA end

但是如果将data定义为如下形式,线程A对data的变更,线程B立马能感知到

public static volatile boolean flag = false;

输出为

threadA end
threadB end

那么是如何实现的呢?其实volatile保证可见性的方式和上面提到的缓存一致性协议的原理很类似

  1. 线程A将工作内存的data更改后,强制将data值刷回主内存

  2. 如果线程B的工作内存中有data变量的缓存时,会强制让这个data变量缓存失效

  3. 当线程B需要读取data变量的值时,先从工作内存中读,发现已经过期,就会从主内存中加载data变量的最新值了

放个图理解的更清楚

AZ7NfiA.png!web

有序性

有序性即程序执行的顺序按照代码的先后顺序执行

int i = 0;              
boolean flag = false;
i = 1;                //语句1  
flag = true;          //语句2

上面代码定义了一个int型变量,定义了一个boolean类型变量,然后分别对两个变量进行赋值操作。从代码顺序上看,语句1是在语句2前面的,那么JVM在真正执行这段代码的时候会保证语句1一定会在语句2前面执行吗?不一定,为什么呢?这里可能会发生指令重排序(Instruction Reorder)。

下面解释一下什么是指令重排序,一般来说,处理器为了提高程序运行效率,可能会对输入代码进行优化,它不保证程序中各个语句的执行先后顺序同代码中的顺序一致,但是它会保证程序最终执行结果和代码顺序执行的结果是一致的。

比如上面的代码中,语句1和语句2谁先执行对最终的程序结果并没有影响,那么就有可能在执行过程中,语句2先执行而语句1后执行。

但是有依赖关系的语句不会进行重排序,如下面求圆面积的代码

double pi = 4.14   //A
double r = 1.0     //B
double area = pi * r * r   //c 

程序的执行顺序只有下面这2个形式
A->B->C和B->A->C,因为A和C之间存在依赖关系,同时B和C之间也存在依赖关系。因此最终执行的指令序列中C不能被重排序到A和B前面。

虽然重排序不会影响单个线程内程序执行的结果,但是多线程呢?下面看一个例子

//线程1:
context = loadContext();   //语句1
inited = true;             //语句2

//线程2:
while(!inited ){
  sleep()
}
doSomethingwithconfig(context);

上面代码中,由于语句1和语句2没有数据依赖性,因此可能会被重排序。假如发生了重排序,在线程1执行过程中先执行语句2,而此是线程2会以为初始化工作已经完成,那么就会跳出while循环,去执行doSomethingwithconfig(context)方法,而此时context并没有被初始化,就会导致程序出错。

从上面可以看出,指令重排序不会影响单个线程的执行,但是会影响到线程并发执行的正确性

当写双重检测锁定版本的单例模式时,就要用到volatile来保证可见性

public class Singleton {

   private volatile static Singleton uniqueInstance;

   private Singleton() {}

   public static Singleton getInstance() {
       if (uniqueInstance == null) {
           synchronized (Singleton.class) {
               if (uniqueInstance == null) {
                   uniqueInstance = new Singleton();
               }
           }
       }
       return uniqueInstance;
   }
}

至于为什么要用volatile,看推荐阅读。

原子性

原子性即一个操作或者多个操作 要么全部执行并且执行的过程不会被任何因素打断,要么就都不执行。

public class Test {

    public static volatile int inc = 0;

    public static void main(String[] args) {

        //新建一个线程池
        ExecutorService service = Executors.newCachedThreadPool();
        //Java8 lambda表达式执行runnable接口
        for (int i = 0; i < 5; i++) {
            service.execute(() -> {
                for (int j = 0; j < 1000; j++) {
                    inc++;
                }
            });
        }

        //关闭线程池
        service.shutdown();
        try {
            TimeUnit.SECONDS.sleep(2);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("inc = " + inc);
    }

}

执行上述代码结果并不是每次都是5000,表明volatile并不能保证 原子性

可能有的朋友就会有疑问,不对啊,上面是对变量inc进行自增操作,由于volatile保证了可见性,那么在每个线程中对inc自增完之后,在其他线程中都能看到修改后的值啊,所以有5个线程分别进行了1000次操作,那么最终inc的值应该是1000*5=5000。

这里面就有一个误区了,volatile关键字能保证可见性没有错,但是上面的程序错在没能保证原子性。可见性只能保证每次读取的是最新的值,但是volatile没办法保证对变量的操作的原子性。

在前面已经提到过,自增操作是不具备原子性的,它包括读取变量的原始值、进行加1操作、写入工作内存。那么就是说自增操作的三个子操作可能会分割开执行,就有可能导致下面这种情况出现:

假如某个时刻变量inc的值为10, 线程1对变量进行自增操作,线程1先读取了变量inc的原始值,然后线程1被阻塞了;然后线程2对变量进行自增操作,线程2也去读取变量inc的原始值,由于线程1只是对变量inc进行读取操作,而没有对变量进行修改操作,所以不会导致线程2的工作内存中缓存变量inc的缓存行无效,也不会导致主存中的值刷新,所以线程2会直接去主存读取inc的值( 这个部分小编感觉是海子大佬的笔误,应该是线程2会直接去工作内存读取inc的值,因为工作内存中inc并没有失效 ),发现inc的值时10,然后进行加1操作,并把11写入工作内存,最后写入主存。

然后线程1接着进行加1操作,由于已经读取了inc的值(inc++,包括3个操作,1.读取inc的值,2.进行加1操作,3.写入新的值),注意此时在线程1的工作内存中inc的值仍然为10,所以线程1对inc进行加1操作后inc的值为11,然后将11写入工作内存,最后写入主存。

那么两个线程分别进行了一次自增操作后,inc只增加了1。

根源就在这里,自增操作不是原子性操作,而且volatile也无法保证对变量的任何操作都是原子性的。

解决方案:可以通过synchronized或lock,进行加锁,来保证操作的原子性。也可以通过使用AtomicInteger

应用

前面已经演示过了

1.状态标记量

2. 单例模式中的double check,看推荐阅读

参考资料

《Java并发编程的艺术》

博客园 海子博客

推荐阅读

深入理解单例模式

帮你体系化的学习Git

Java识堂

一个有干货的公众号

M3euya3.jpg!web


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK