55

Replication from Percona Server for MySQL to PostgreSQL using pg_chameleon

 5 years ago
source link: https://www.tuicool.com/articles/hit/Y3IzIve
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
uY7z6jZ.jpg!web

QZ3I3uN.jpg!web Replication is one of the well-known features that allows us to build an identical copy of a database. It is supported in almost every RDBMS. The advantages of replication may be huge, especially HA (High Availability) and load balancing. But what if we need to build replication between 2 heterogeneous databases like MySQL and PostgreSQL? Can we continuously replicate changes from a MySQL database to a PostgreSQL database? The answer to this question is pg_chameleon .

For replicating continuous changes, pg_chameleon uses the mysql-replication library to pull the row images from MySQL, which are transformed into a jsonb object. A pl/pgsql function in postgres decodes the jsonb and replays the changes into the postgres database. In order to setup this type of replication, your mysql binlog_format must be “ROW”.

A few points you should know before setting up this tool :

  1. Tables that need to be replicated must have a primary key.
  2. Works for PostgreSQL versions > 9.5 and MySQL > 5.5
  3. binlog_format must be ROW in order to setup this replication.
  4. Python version must be > 3.3

When you initialize the replication, pg_chameleon pulls the data from MySQL using the CSV format in slices, to prevent memory overload. This data is flushed to postgres using the COPY command. If COPY fails, it tries INSERT, which may be slow. If INSERT fails, then the row is discarded.

To replicate changes from mysql, pg_chameleon mimics the behavior of a mysql slave. It creates the schema in postgres, performs the initial data load, connects to MySQL replication protocol, stores the row images into a table in postgres. Now, the respective functions in postgres decode those rows and apply the changes. This is similar to storing relay logs in postgres tables and applying them to a postgres schema. You do not have to create a postgres schema using any DDLs. This tool automatically does that for the tables configured for replication. If you need to specifically convert any types, you can specify this in the configuration file.

The following is just an exercise that you can experiment with and implement if it completely satisfies your requirement. We performed these tests on CentOS Linux release 7.4.

Prepare the environment

Set up Percona Server for MySQL

InstallMySQL 5.7 and add appropriate parameters for replication.

In this exercise, I have installed Percona Server for MySQL 5.7 using YUM repo.

yum install http://www.percona.com/downloads/percona-release/redhat/0.1-6/percona-release-0.1-6.noarch.rpm
yum install Percona-Server-server-57
echo "mysql ALL=(ALL) NOPASSWD: ALL" >> /etc/sudoers
usermod -s /bin/bash mysql
sudo su - mysql

pg_chameleon requires the following the parameters to be set in your my.cnf file (parameter file of your MySQL server). You may add the following parameters to /etc/my.cnf

binlog_format= ROW
binlog_row_image=FULL
log-bin = mysql-bin
server-id = 1

Now start your MySQL server after adding the above parameters to your my.cnf file.

$ service mysql start

Fetch the temporary root password from mysqld.log, and reset the root password using mysqladmin

$ grep "temporary" /var/log/mysqld.log
$ mysqladmin -u root -p password 'Secret123!'

Now, connect to your MySQL instance and create sample schema/tables. I have also created an emp table for validation.

$ wget http://downloads.mysql.com/docs/sakila-db.tar.gz
$ tar -xzf sakila-db.tar.gz
$ mysql -uroot -pSecret123! < sakila-db/sakila-schema.sql
$ mysql -uroot -pSecret123! < sakila-db/sakila-data.sql
$ mysql -uroot -pSecret123! sakila -e "create table emp (id int PRIMARY KEY, first_name varchar(20), last_name varchar(20))"

Create a user for configuring replication using pg_chameleon and give appropriate privileges to the user using the following steps.

$ mysql -uroot -p
create user 'usr_replica'@'%' identified by 'Secret123!';
GRANT ALL ON sakila.* TO 'usr_replica'@'%';
GRANT RELOAD, REPLICATION CLIENT, REPLICATION SLAVE ON *.* TO 'usr_replica'@'%';
FLUSH PRIVILEGES;

While creating the user in your mysql server (‘usr_replica’@’%’), you may wish to replace % with the appropriate IP or hostname of the server on which pg_chameleon is running.

Set up PostgreSQL

Install PostgreSQL and start the database instance.

You may use the following steps to install PostgreSQL 10.x

yum install https://yum.postgresql.org/10/redhat/rhel-7.4-x86_64/pgdg-centos10-10-2.noarch.rpm
yum install postgresql10*
su - postgres
$/usr/pgsql-10/bin/initdb
$ /usr/pgsql-10/bin/pg_ctl -D /var/lib/pgsql/10/data start

As seen in the following logs, c reate a user in PostgreSQL using which pg_chameleon can write changed data to PostgreSQL.  Also create the target database.

postgres=# CREATE USER usr_replica WITH ENCRYPTED PASSWORD 'secret';
CREATE ROLE
postgres=# CREATE DATABASE db_replica WITH OWNER usr_replica;
CREATE DATABASE

Steps to install and setup replication using pg_chameleon

Step 1: In this exercise, I installed Python 3.6 and pg_chameleon 2.0.8 using the following steps. You may skip the python install steps if you already have the desired python release.  We can create a virtual environment if the OS does not include Python 3.x by default.

yum install gcc openssl-devel bzip2-devel wget
cd /usr/src
wget https://www.python.org/ftp/python/3.6.6/Python-3.6.6.tgz
tar xzf Python-3.6.6.tgz
cd Python-3.6.6
./configure --enable-optimizations
make altinstall
python3.6 -m venv venv
source venv/bin/activate
pip install pip --upgrade
pip install pg_chameleon

Step 2: This tool requires a configuration file to store the source/target server details, and a directory to store the logs. Use the following command to let pg_chameleon create the configuration file template and the respective directories for you.

$ chameleon set_configuration_files

The above command would produce the following output, which shows that it created some directories and a file in the location where you ran the command.

creating directory /var/lib/pgsql/.pg_chameleon
creating directory /var/lib/pgsql/.pg_chameleon/configuration/
creating directory /var/lib/pgsql/.pg_chameleon/logs/
creating directory /var/lib/pgsql/.pg_chameleon/pid/
copying configuration example in /var/lib/pgsql/.pg_chameleon/configuration//config-example.yml

Copy the sample configuration file to another file, lets say, default.yml

$ cd .pg_chameleon/configuration/
$ cp config-example.yml default.yml

Here is how my default.yml file looks after adding all the required parameters. In this file, we can optionally specify the data type conversions, tables to skipped from replication and the DML events those need to skipped for selected list of tables.

---
#global settings
pid_dir: '~/.pg_chameleon/pid/'
log_dir: '~/.pg_chameleon/logs/'
log_dest: file
log_level: info
log_days_keep: 10
rollbar_key: ''
rollbar_env: ''
# type_override allows the user to override the default type conversion into a different one.
type_override:
  "tinyint(1)":
    override_to: boolean
    override_tables:
      - "*"
#postgres  destination connection
pg_conn:
  host: "localhost"
  port: "5432"
  user: "usr_replica"
  password: "secret"
  database: "db_replica"
  charset: "utf8"
sources:
  mysql:
    db_conn:
      host: "localhost"
      port: "3306"
      user: "usr_replica"
      password: "Secret123!"
      charset: 'utf8'
      connect_timeout: 10
    schema_mappings:
      sakila: sch_sakila
    limit_tables:
#      - delphis_mediterranea.foo
    skip_tables:
#      - delphis_mediterranea.bar
    grant_select_to:
      - usr_readonly
    lock_timeout: "120s"
    my_server_id: 100
    replica_batch_size: 10000
    replay_max_rows: 10000
    batch_retention: '1 day'
    copy_max_memory: "300M"
    copy_mode: 'file'
    out_dir: /tmp
    sleep_loop: 1
    on_error_replay: continue
    on_error_read: continue
    auto_maintenance: "disabled"
    gtid_enable: No
    type: mysql
    skip_events:
      insert:
#        - delphis_mediterranea.foo #skips inserts on the table delphis_mediterranea.foo
      delete:
#        - delphis_mediterranea #skips deletes on schema delphis_mediterranea
      update:

Step 3: Initialize the replica using this command:

$ chameleon create_replica_schema --debug

The above command creates a schema and nine tables in the PostgreSQL database that you specified in the .pg_chameleon/configuration/default.yml file. These tables are needed to manage replication from source to destination. The same can be observed in the following log.

db_replica=# \dn
List of schemas
Name | Owner
---------------+-------------
public | postgres
sch_chameleon | target_user
(2 rows)
db_replica=# \dt sch_chameleon.t_*
List of relations
Schema | Name | Type | Owner
---------------+------------------+-------+-------------
sch_chameleon | t_batch_events | table | target_user
sch_chameleon | t_discarded_rows | table | target_user
sch_chameleon | t_error_log | table | target_user
sch_chameleon | t_last_received | table | target_user
sch_chameleon | t_last_replayed | table | target_user
sch_chameleon | t_log_replica | table | target_user
sch_chameleon | t_replica_batch | table | target_user
sch_chameleon | t_replica_tables | table | target_user
sch_chameleon | t_sources | table | target_user
(9 rows)

Step 4:Add the source details to pg_chameleon using the following command. Provide the name of the source as specified in the configuration file. In this example, the source name is mysql and the target is postgres database defined under pg_conn.

$ chameleon add_source --config default --source mysql --debug

Once you run the above command, you should see that the source details are added to the t_sources table.

db_replica=# select * from sch_chameleon.t_sources;
-[ RECORD 1 ]-------+----------------------------------------------
i_id_source | 1
t_source | mysql
jsb_schema_mappings | {"sakila": "sch_sakila"}
enm_status | ready
t_binlog_name |
i_binlog_position |
b_consistent | t
b_paused | f
b_maintenance | f
ts_last_maintenance |
enm_source_type | mysql
v_log_table | {t_log_replica_mysql_1,t_log_replica_mysql_2}
$ chameleon show_status --config default
Source id Source name Type Status Consistent Read lag Last read Replay lag Last replay
----------- ------------- ------ -------- ------------ ---------- ----------- ------------ -------------
1 mysql mysql ready Yes N/A N/A

Step 5: Initialize the replica/slave using the following command. Specify the source from which you are replicating the changes to the PostgreSQL database.

$ chameleon init_replica --config default --source mysql --debug

Initialization involves the following tasks on the MySQL server (source).

1. Flush the tables with read lock

2. Get the master’s coordinates

3. Copy the data

4. Release the locks

The above command creates the target schema in your postgres database automatically.

In the default.yml file, we mentioned the following schema_mappings.

schema_mappings:
sakila: sch_sakila

So, now it created the new schema scott in the target database db_replica.

db_replica=# \dn
List of schemas
Name | Owner
---------------+-------------
public | postgres
sch_chameleon | usr_replica
sch_sakila | usr_replica
(3 rows)

Step 6: Now, start replication using the following command.

$ chameleon start_replica --config default --source mysql

Step 7: Check replication status and any errors using the following commands.

$ chameleon show_status --config default
$ chameleon show_errors

This is how the status looks:

$ chameleon show_status --source mysql
Source id Source name Type Status Consistent Read lag Last read Replay lag Last replay
----------- ------------- ------ -------- ------------ ---------- ----------- ------------ -------------
1 mysql mysql running No N/A N/A
== Schema mappings ==
Origin schema Destination schema
--------------- --------------------
sakila sch_sakila
== Replica status ==
--------------------- ---
Tables not replicated 0
Tables replicated 17
All tables 17
Last maintenance N/A
Next maintenance N/A
Replayed rows
Replayed DDL
Skipped rows

Now, you should see that the changes are continuously getting replicated from MySQL to PostgreSQL.

Step 8:  To validate, you may insert a record into the table in MySQL that we created for the purpose of validation and check that it is replicated to postgres.

$ mysql -u root -pSecret123! -e "INSERT INTO sakila.emp VALUES (1,'avinash','vallarapu')"
mysql: [Warning] Using a password on the command line interface can be insecure.
$ psql -d db_replica -c "select * from sch_sakila.emp"
 id | first_name | last_name
----+------------+-----------
  1 | avinash    | vallarapu
(1 row)

In the above log, we see that the record that was inserted to the MySQL table was replicated to the PostgreSQL table.

You may also add multiple sources for replication to PostgreSQL (target).

Reference : http://www.pgchameleon.org/documents/

Please refer to the above documentation to find out about the many more options that are available with pg_chameleon

The post Replication from Percona Server for MySQL to PostgreSQL using pg_chameleon appeared first on Percona Database Performance Blog .


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK