

人工智能的三大局限性
source link: https://www.linuxprobe.com/ai-boundedness.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

任何技术都有局限性,AI和人工智能也不例外。其局限有三:检测、功耗和人力。
思科一份最近的调查显示,39%的CISO称其公司依赖自动化推动网络安全工作,另有34%称依赖机器学习,32%报告称高度依赖人工智能(AI)。CISO如此看好AI令人颇为意外,毕竟,除了识别恶意行为,AI在网络安全方面的应用场景似乎也不是很多。
老实说,AI绝对有益于网络安全。随着恶意软件像流感病毒一样不断自我变异,不使用AI几乎不可能发展出恰当的响应策略。银行或信用卡提供商之类的金融机构也可以通过适当训练的AI大幅强化其SIEM系统,提升欺诈检测和预防能力。但AI并非万灵丹,炒作得再多也不是。事实上,与其他任何技术一样,AI也有其局限性。
这是个大问题。安全人员用AI优化威胁检测的同时,攻击者也在琢磨着用AI规避检测。公司企业用AI以更高的准确率检测攻击,攻击者就用AI来开发更智能、会进化的恶意软件来规避检测。基本上,恶意软件就是用AI来逃过AI检测。恶意软件一旦通过了公司的AI检测关,可以很轻松在公司网络内横向移动而不触发任何警报,公司的AI会将恶意软件的各种探测行为当做统计错误加以排除。而到恶意软件被检出之时,安全防线早已被洞穿,伤害也可能已经造成。
物联网(IoT)设备通常都是低功耗小数据量的。如果攻击者成功将恶意软件部署到了这一层次,那AI基本就顶不上用了。AI需要大量内存、算力和大数据才可以发挥作用。而IoT设备通常不具备这几个条件,数据必须发送到云进行处理才可以受到AI的响应。而那时,已经太迟。就好像出车祸时车载AI会自动拨打报警电话并报告车辆所处位置,但车祸已经发生的事实改变不了。车辆自动报警可能比等路人帮忙报警要快一点,但仍然无法预防撞车。AI最多有助于在设备完全失控之前检测出有什么不对劲,或者,在最坏的情况下,让你不至于失去整个IoT基础设施。
严格控制的网络上AI运行良好,但现实世界缤纷多彩不受控。AI有四大痛点:影子IT、BYOD项目、SaaS系统、雇员。无论你给AI灌注了多少大数据,都得同时解决这4个痛点,而这是难度大到几乎不可能的任务。总有雇员会通过不安全WiFi网络在个人笔记本电脑上打开公司的Gmail邮件,然后,敏感数据就此流失,AI甚至连知道这一事件的机会都没有。最终,公司自己的应用可以受到AI保护,防止用户误用,但终端用户使用你根本感知不到的设备你是无法防护的。另外,仅提供智能手机App,不提供企业访问控制,更不用说实时日志的云系统,你又怎么引入AI呢?这种情况,企业没有办法成功利用机器学习。
AI确实有所帮助,但它并非游戏规则颠覆者。AI可用于在受控系统中检测恶意软件或攻击者,但难以防止恶意软件被部署在公司系统中,而且除非你确保它能控制你所有终端设备和系统,否则它一点用都没有。网络攻防战一直在继续,只不过,防御者和攻击者都在用与以往不同的武器,而我们的防御只有在恰当部署和管理之下才会有效。
与其将AI当成网络安全救星,不如把精力放在更基本的老问题上:缺乏控制、缺乏监视、缺乏对潜在威胁的理解。只有了解了用户和用户使用的设备,知道用户都会拿这些设备来干什么,然后确保所用系统能切实受到AI的保护,才可以开始部署并训练AI。
Recommend
About Joyk
Aggregate valuable and interesting links.
Joyk means Joy of geeK