43

走进科学之揭开神秘的 “零拷贝”

 5 years ago
source link: https://mp.weixin.qq.com/s/SpBj4XpNvYtvMSAjANmMYA?amp%3Butm_medium=referral
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

前言

"零拷贝"这三个字,想必大家多多少少都有听过吧,这个技术在各种开源组件中都使用了,比如kafka,rocketmq,netty,nginx等等开源框架都在其中引用了这项技术。所以今天想和大家分享一下有关于零拷贝的一些知识。

计算机中数据传输

在介绍零拷贝之前我想说下在计算机系统中数据传输的方式。数据传输系统的发展,为了写这一部分又祭出了我尘封多年的计算机组成原理:

fE73ami.jpg!web

早期阶段:

分散连接,串行工作,程序查询。 在这个阶段,CPU就像个保姆一样,需要手把手的把数据从I/O接口从读出然后再送给主存。 32MZFba.png!web 这个阶段具体流程是:

  1. CPU主动启动I/O设备

  2. 然后CPU一直问I/O设备老铁你准备好了吗,注意这里是一直询问。

  3. 如果I/O设备告诉了CPU说:我准备好了。CPU就从I/O接口中读数据。

  4. 然后CPU又继续把这个数据传给主存,就像快递员一样。

这种效率很低数据传输过程一直占据着CPU,CPU不能做其他更有意义的事。

接口模块和DMA阶段

这一部分介绍的也是我们后面具体

接口模块

在冯诺依曼结构中,每个部件之间均有单独连线,不仅先多,而且导致扩展I/O设备很不容易,我们上面的早期阶段就是这个体系,叫作分散连接。扩展一个I/O设备得连接很多线。所以引入了总线连接方式,将多个设备连接在同一组总线上,构成设备之间的公共传输通道。 MfUfu2Y.png!web 这个也是现在我们家用电脑或者一些小型计算器的数据交换结构。

在这种模式下数据交换采用程序中断的方式,我们上面知道我们启动I/O设备之后一直在轮询问I/O设备是否准备好,要是把这个阶段去掉了就好了,程序中断很好的实现了我们的夙愿:

  1. CPU主动启动I/O设备。

  2. CPU启动之后不需要再问I/O,开始做其他事,类似异步化。

  3. I/O准备好了之后,通过总线中断告诉CPU我已经准备好了。

  4. CPU进行读取数据,传输给主存中。

DMA

虽然上面的方式虽然提高了CPU的利用率,但是在中断的时候CPU一样是被占用的,为了进一步解决CPU占用,又引入了DMA方式,在DMA方式中,主存和I/O设备之间有一条数据通路,这下主存和I/O设备之间交换数据时,就不需要再次中断CPU。

qEFRBva.jpg!web

一般来说我们只需要关注DMA和中断两种即可,下面介绍的都是用来适合大型计算机的一些,这里只说简单的过一下:

具有通道结构的阶段

在小型计算机中采用DMA方式可以实现高速I/O设备与主机之间组成数据的交换,但在大中型计算机中,I/O配置繁多,数据传送平凡,若采用DMA方式会出现一系列问题。

  • 每台I/O设备都配置专用额DMA接口,不仅增加了硬件成本,而且解决DMA和CPU访问冲突问题,会使控制变得十分复杂。

  • CPU需要对众多的DMA接口进行管理,同样会影响工作效率。

所以引入了通道,通道用来管理I/O设备以及主存与I/O设备之间交换信息的部件,可以视为一种具有特殊功能的处理器。它是从属于CPU的一个专用处理器,CPU不直接参与管理,故提高了CPU的资源利用率

具有I/O处理机的阶段

输入输出系统发展到第四阶段,出现了I/O处理机。I/O处理机又称为外围处理机,它独立于主机工作,既可以完成I/O通道要完成的I/O控制,又完成格式处理,纠错等操作。具有I/O处理机的输出系统与CPU工作的并行度更高,这说明I.O系统对主机来说具有更大的独立性。

小结

我们可以看到数据传输进化的目标是一直在减少CPU占有,提高CPU的资源利用率。

数据拷贝

先介绍一下今天我们的需求,在磁盘中有个文件,现在需要通过网络传输出去。 如果是你应该怎么做?通过上面的一些介绍,相信你心中应该有些想法了吧。

传统拷贝

如果我们用Java代码实现的话用我们会有如下的的实现:伪代码参考如下:

这是我们传统的拷贝方式具体的数据流转图如下,PS:这里不考虑Java中传输数据时需要先将堆中的数据拷贝到直接内存中。 bi6FNzn.jpg!web

可以看见我们总管需要经历四个阶段,2次DMA,2次CPU中断,总共四次拷贝,有四次上下文切换,并且会占用两次CPU。

  1. CPU发指令给I/O设备的DMA,由DMA将我们磁盘中的数据传输到内核空间的内核buffer。

  2. 第二阶段触发我们的CPU中断,CPU开始将将数据从kernel buffer拷贝至我们的应用缓存

  3. CPU将数据从应用缓存拷贝到内核中的socket buffer.

  4. DMA将数据从socket buffer中的数据拷贝到网卡缓存。

优点:开发成本低,适合一些对性能要求不高的,比如一些什么管理系统这种我觉得就应该够了

缺点:多次上下文切换,占用多次CPU,性能比较低。

sendFile实现零拷贝

上面是零拷贝呢?在wiki中的定位:通常是指计算机在网络上发送文件时,不需要将文件内容拷贝到用户空间(User Space)而直接在内核空间(Kernel Space)中传输到网络的方式。

在java NIO中FileChannal.transferTo()实现了操作系统的sendFile,我们可以同下面伪代码完成上面需求:

我们通过java.nio中的channel替代了我们上面的socket和fileInputStream,从而完成了我们的零拷贝。

eIzQRrF.jpg!web

上面具体过程如下:

  1. 调用sendfie(),CPU下发指令叫DMA将磁盘数据拷贝到内核buffer中。

  2. DMA拷贝完成发出中断请求,进行CPU拷贝,拷贝到socket buffer中。sendFile调用完成返回。 3.DMA将socket buffer拷贝至网卡buffer。

可以看见我们根本没有把数据复制到我们的应用缓存中,所以这种方式就是零拷贝。但是这种方式依然很蛋疼,虽然减少到了只有三次数据拷贝,但是还是需要CPU中断复制数据。为啥呢?因为DMA需要知道内存地址我才能发送数据啊。所以在Linux2.4内核中做了改进,将Kernel buffer中对应的数据描述信息(内存地址,偏移量)记录到相应的socket缓冲区当中。 最终形成了下面的过程: VRjEr2J.jpg!web

这种方式让CPU全程不参与拷贝,因此效率是最好的。

在第三方开源框架中Netty,RocketMQ,kafka中都有类似的代码,大家如果感兴趣可以下来自行搜索。

mmap映射

上面我们提到了零拷贝的实现,但是我们只能将数据原封不动的发给用户,并不能自己使用。于是Linux提供的一种访问磁盘文件的特殊方式,可以将内存中某块地址空间和我们要指定的磁盘文件相关联,从而把我们对这块内存的访问转换为对磁盘文件的访问,这种技术称为内存映射(Memory Mapping)。 我们通过这种技术将文件直接映射到用户态的内存地址,这样对文件的操作不再是write/read,而是直接对内存地址的操作。

在Java中依靠MappedByteBuffer进行mmap映射,具体的MappedByteBuffer可以详情参照这篇文章:https://www.jianshu.com/p/f90866dcbffc 。

最后

自此,零拷贝的神秘面纱也被揭盖,零拷贝只是为了减少CPU的占用,让CPU做更多真正业务上的事。通过这篇文章,大家可以自己下来看看Netty是怎么做零拷贝的相信将会有更加深刻的印象。

由于作者本人水平不够,如果有什么错误,还请指正。如果上面问题有什么疑问的话可以关注公众号,来和我一起讨论吧,关注即可免费领取海量最新java学习资料视频,以及最新面试资料。

如果大家觉得这篇文章对你有帮助,或者你有什么疑问想提供1v1免费vip服务,都可以关注我的公众号,关注即可免费领取海量最新java学习资料视频,以及最新面试资料,你的关注和转发是对我最大的支持,O(∩_∩)O:

FNNfemf.jpg!web


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK