1

Antipatterns of Software engineering courses

 3 years ago
source link: https://blog.vermorel.com/journal/2006/9/23/antipatterns-of-software-engineering-courses.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

Antipatterns of Software engineering courses

I am very honored to be in charge of the Sofware engineering and distributed applications course at the Ecole normale superieure (ENS). This will be my first official teaching assignment, and I will be affected to brilliant Licence 3 students (it’s pretty tough to get through the entrance exam of the ENS).

Software engineering is a difficult topic to teach. I have been browsing the web just to have an outlook at what people are usually doing in a software engineering course, and I must confess that I haven’t found anything very satisfying so far (although the MIT experience is definitively worth reading). In a nutshell, I would say that software engineering is the art of producing great software with limited resources. In respect to this definition, it seems that there are many ways to spend hours teaching things that totally miss the point. I have listed in this post what I think to be the 3 most common ways of disgusting students from all software engineering matters.

Coding antipattern

Here is the 300-pages API. This API will be the subject of your exam. Documents will not be authorized.

The second fastest way on earth to get your 30h of teaching ready is simply to teach some particular programming language and its associated technologies (think Apache/PHP/MySql, stay tuned the fastest way will be detailed next). Just take any reference documentation, and you get enough material to talk for 30h. But your course is both deadly boring and super-short-lived. Some people assume that their students have no prior knowledge about any language. I won’t (it’s stated in the course-prerequisite btw). My objective is not to teach the syntax of any programming language, because I believe students are smart enough to learn that by themselves. If not then, I would say that it was a bad move to take the software engineering course in the first place.

ISO-certified development antipattern

If you don’t assess your customer requirements through a 17-phase process, then you’re not ISO-171717.

Just by looking at Learning Tree - Software Engineering course (one of the top result of Google for “software engineering”), I think Wow, those people are attempting to kill their attendants with boredom. Look at the table of content: Life cycle phase contains (sic) 1) Understanding the problem 2) Developing the solution 3) Verifying the product 4) Maintaining the system. I can’t remember of any software project that ever happened that way but who cares because the content is going to be nothing more than obvious statements anyway.

I call this kind of teaching ISO-certified development, the worst part being certainly the enumeration of software life-cycle models (which are, according to Learning Tree: Waterfall, V, Phased, Evolutionary and Spiral). This approach is basically the extreme opposite of the coding course. You’re not teaching anything technical, instead you end-up with long, super-detailed, over-boring descriptions of business practices that do not even exists as such in the real world anyway.

Green-field projects antipattern

Our project was to develop a video game. Alice wrote the scenario, Bob took care of the rules and I did the graphics. The rest has been left unfinished.

The fastest way on earth to get your 30h software teaching course ready is the green-field project: just say Decide among yourselves what you’re gonna do, I will be the judge of the software you produced and then, spend the next 30h doing groupwork (groupwork is like teamwork but instead of having a team, you have a random bunch of people, i.e. a group). Don’t take me wrong, I think that projects do have a huge pedagogic value, yet the probability of re-discovering good software engineering ideas just by doing random groupwork is low.

There are also other criticisms to the green-field projects as usually practiced. The first poor practice is to let the students come up with their own project ideas. For various reasons, students have a tendency to favor projects that are quite ill-adapted (such as video games); then it’s really hard to scale the project in such a way that it matches the time to be invested in the course. The second poor practice is to let the students come up with their own internal organization. I have never encountered any company where all employees are equal, I do not see why it should be the case in a student software project (more on the subject in a subsequent post).


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK