6

LSTM的备胎,用卷积处理时间序列——TCN与因果卷积(理论+Python实践)

 3 years ago
source link: http://www.cnblogs.com/PythonLearner/p/12925732.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

什么是TCN

TCN全称Temporal Convolutional Network,时序卷积网络,是在2018年提出的一个卷积模型,但是可以用来处理时间序列。

卷积如何处理时间序列

时间序列预测,最容易想到的就是那个马尔可夫模型:

\[P(y_k|x_k,x_{k-1},...,x_1) \]

就是计算某一个时刻的输出值,已知条件就是这个时刻之前的所有特征值。上面公式中,P表示概率,可以不用管这个, \(y_k\) 表示k时刻的输出值(标签), \(x_k\) 表示k时刻的特征值。

如果使用LSTM或者是GRU这样的RNN模型,自然是可以处理这样的时间序列模型的,毕竟RNN生来就是为了这个的。

但是这个时间序列模型,宏观上思考的话,其实就是对这个这个时刻之前的数据做某个操作,然后生成一个标签,回想一下在卷积在图像中的操作,其实有异曲同工。(这里不理解也无妨,因为我之前搞了一段时间图像处理,所以对卷积相对熟悉一点)。

一维卷积

假设有一个时间序列,总共有五个时间点,比方说股市,有一个股票的价格波动:[10,13,12,14,15]:

zQZFNz3.png!web

TCN中,或者说因果卷积中,使用的卷积核大小都是2,我也不知道为啥不用更大的卷积核,看论文中好像没有说明这个,如果有小伙伴知道原因或者有猜想,可以下方评论处一起讨论讨论。

卷积核是2,那么可想而知,对上面5个数据做一个卷积核为2的卷积是什么样子的:

rErqAf7.png!web

五个数据经过一次卷积,可以变成四个数据,但是每一个卷积后的数据都是基于两个原始数据得到的,所以说,目前卷积的视野域是2。

可以看到是输入是5个数据,但是经过卷积,变成4个数据了,在图像中有一个概念是通过padding来保证卷积前后特征图尺寸不变,所以在时间序列中,依然使用padding来保证尺寸不变:

ueARver.png!web

padding是左右两头都增加0,如果padding是1的话,就是上图的效果,其实会产生6个新数据,但是秉着:“输入输出尺寸相同”和“我们不能知道未来的数据”,所以最后边那个未来的padding,就省略掉了,之后再代码中会体现出来。

总之,现在我们大概能理解,对时间序列卷积的大致流程了,也就是对一维数据卷积的过程(图像卷积算是二维)。

下面看如何使用Pytorch来实现一维卷积:

net = nn.Conv1d(in_channels=1,out_channels=1,kernel_size=2,stride=1,padding=1,dilation=1)

其中的参数跟二维卷积非常类似,也是有通道的概念的。这个好好品一下,一维数据的通道跟图像的通道一样,是根据不同的卷积核从相同的输入中抽取出来不同的特征。kernel_size=2之前也说过了,padding=1也没问题,不过这个公式中假如输入5个数据+padding=1,会得到6个数据,最后一个数据被舍弃掉。dilation是膨胀系数,下面的下面会讲。

因果卷积

  • 因果卷积是在wavenet这个网络中提出的,之后被用在了TCN中。
    TCN的 论文链接
  • 因果卷积应为就是:Causal Convolutions。

之前已经讲了一维卷积的过程了,那么因果卷积,其实就是一维卷积的一种应用吧算是。

假设想用上面讲到的概念,做一个股票的预测决策模型,然后希望决策模型可以考虑到这个时间点之前的4个时间点的股票价格进行决策,总共有3种决策:

  • 0:不操作,1:买入,2:卖出

所以其实就是一个分类问题。因为要求视野域是4,所以按照上面的设想,要堆积3个卷积核为2的1维卷积层:

Uv6NzmZ.png!web

三次卷积,可以让最后的输出,拥有4个视野域。就像是上图中红色的部分,就是做出一个决策的过程。

股票数据,往往是按照分钟记录的,那少说也是十万、百万的数据量,我们决策,想要考虑之前1000个时间点呢?视野域要是1000,那意味着要999层卷积?啥计算机吃得消这样的计算。所以引入了膨胀因果卷积。

膨胀因果卷积

  • 英文是Dilated Causal Convolution。这个其实就是空洞卷积啦,不确定在之前的博文中有没有讲过这个概念(最近别人要求在写一个非常长的教程,和博客中的博文可能会有记忆混乱的情况2333)
  • 反正就是,这个空洞卷积、或者叫扩张卷积、或者叫膨胀卷积就是操作dilation这个参数。
    IRZBjqJ.png!web 如图,这个就是dilation=2的时候的情况,与之前的区别有两个:
  • 看红色区域:可以看到卷积核大小依然是2,但是卷积核之间变得空洞了,隔过去了一个数据;如果dilation=3的话,那么可以想而知,这个卷积核中间会空的更大,会隔过去两个数据。
  • 看淡绿色数据:因为dilation变大了,所以相应的padding的数量从1变成了2,所以为了保证输入输出的特征维度相同,padding的数值等于dalition的数值(在卷积核是2的情况下,严格说说:padding=(kernel_size-1)*dilation)

然后我们依然实现上面那个例子,每次决策想要视野域为4:

u6re6rn.png!web

可以看到,第一次卷积使用dilation=1的卷积,然后第二次使用dilation=2的卷积,这样通过两次卷积就可以实现视野域是4.

那么假设事业域要是8呢?那就再加一个dilation=4的卷积。dilation的值是2的次方,然后视野域也是2的次方的增长,那么就算是要1000视野域,那十层大概就行了。

这里有一个动图,挺好看的:

uYBBvi6.gif

TCN结构

TCN基本就是一个膨胀因果卷积的过程,只是上面我们实现因果卷积就只有一个卷积层。而TCN的稍微复杂一点(但是不难!)

  • 卷积结束后会因为padding导致卷积之后的新数据的尺寸B>输入数据的尺寸A,所以只保留输出数据中前面A个数据;
  • 卷积之后加上个ReLU和Dropout层,不过分吧这要求。
  • 然后TCN中并不是每一次卷积都会扩大一倍的dilation,而是每两次扩大一倍的dilation
  • 总之TCN中的基本组件:TemporalBlock()是两个dilation相同的卷积层,卷积+修改数据尺寸+relu+dropout+卷积+修改数据尺寸+relu+dropout
  • 之后弄一个Resnet残差连接来避免梯度消失,结束!
    关于Resnet的内容: 【从零学习PyTorch】 如何残差网络resnet作为pre-model +代码讲解+残差网络resnet是个啥 其实不看也行,不妨碍理解TCN

模型的PyTorch实现(最好了解一点PyTorch)

如果不了解的话,emm,我要安利我的博文了2333:

从零学习pytorch 第5课 PyTorch模型搭建三要素
# 导入库
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm
# 这个函数是用来修剪卷积之后的数据的尺寸,让其与输入数据尺寸相同。
class Chomp1d(nn.Module):
    def __init__(self, chomp_size):
        super(Chomp1d, self).__init__()
        self.chomp_size = chomp_size

    def forward(self, x):
        return x[:, :, :-self.chomp_size].contiguous()

可以看出来,这个函数就是第一个数据到倒数第chomp_size的数据,这个chomp_size就是padding的值。比方说输入数据是5,padding是1,那么会产生6个数据没错吧,那么就是保留前5个数字。

# 这个就是TCN的基本模块,包含8个部分,两个(卷积+修剪+relu+dropout)
# 里面提到的downsample就是下采样,其实就是实现残差链接的部分。不理解的可以无视这个
class TemporalBlock(nn.Module):
    def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2):
        super(TemporalBlock, self).__init__()
        self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size,
                                           stride=stride, padding=padding, dilation=dilation))
        self.chomp1 = Chomp1d(padding)
        self.relu1 = nn.ReLU()
        self.dropout1 = nn.Dropout(dropout)

        self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size,
                                           stride=stride, padding=padding, dilation=dilation))
        self.chomp2 = Chomp1d(padding)
        self.relu2 = nn.ReLU()
        self.dropout2 = nn.Dropout(dropout)

        self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1,
                                 self.conv2, self.chomp2, self.relu2, self.dropout2)
        self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None
        self.relu = nn.ReLU()
        self.init_weights()

    def init_weights(self):
        self.conv1.weight.data.normal_(0, 0.01)
        self.conv2.weight.data.normal_(0, 0.01)
        if self.downsample is not None:
            self.downsample.weight.data.normal_(0, 0.01)

    def forward(self, x):
        out = self.net(x)
        res = x if self.downsample is None else self.downsample(x)
        return self.relu(out + res)

最后就是TCN的主网络了:

class TemporalConvNet(nn.Module):
    def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2):
        super(TemporalConvNet, self).__init__()
        layers = []
        num_levels = len(num_channels)
        for i in range(num_levels):
            dilation_size = 2 ** i
            in_channels = num_inputs if i == 0 else num_channels[i-1]
            out_channels = num_channels[i]
            layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size,
                                     padding=(kernel_size-1) * dilation_size, dropout=dropout)]

        self.network = nn.Sequential(*layers)

    def forward(self, x):
        return self.network(x)

咋用的呢?就是num_inputs就是输入数据的通道数,一般就是1; num_channels应该是个列表,其他的np.array也行,比方说是[2,1]。那么整个TCN模型包含两个TemporalBlock,整个模型共有4个卷积层,第一个TemporalBlock的两个卷积层的膨胀系数 \(dilation=2^0=1\) ,第二个TemporalBlock的两个卷积层的膨胀系数是 \(dilation=2^1=2\) .

没了,整个TCN挺简单的,如果之前学过PyTorch和图像处理的一些内容,然后用TCN来上手时间序列,效果会和LGM差不多。(根据最近做的一个比赛),没有跟Wavenet比较过,Wavenet的pytorch资源看起来怪复杂的,因为wavenet是用来处理音频生成的,会更加复杂一点。

总之TCN就这么多,谢谢大家。


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK