14

【信号与系统】05 - 滤波、采样和通信

 4 years ago
source link: http://www.cnblogs.com/edward-bian/p/12286327.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

本篇将举三个重要的理论或领域,以展示之前信号理论的应用和意义。其中滤波理论和通信系统是非常大的应用领域,这里仅对基础的概念和方法做个介绍,以作入门之用。

1. 滤波系统

1.1 滤波器

在系统函数的性质中,我们看到信号在时域上的微分、积分、卷积等复杂运算,在频域都变成了代数运算。这说明分析和使用信号的频域,有其天然的优势,也会带来更广泛的应用。当然,频域的操作最终都体现在时域上,注意讨论其相互关系和平衡,有时也是必需的。滤波系统主要就是以信号的频域为操作对象,具体来说就是调整不同基波的波幅、相位,以使输出信号满足具体需求,这样的系统也叫 滤波器 (Filter)。

在讨论具体滤波器之前,有必要先说清楚系统对信号的频域究竟产生了什么影响。信号的频谱系数\(X(j\omega)\)是一个复值函数,模\(|X(j\omega)|\)表示基波峰谷的高度,它称为频谱的 幅度 ;角度\(\sphericalangle X(j\omega)\)表示基波初始位置,它称为频谱的 相位 。LIT系统就是将信号的频谱乘上了系统函数\(H(j\omega)\),把影响按幅度和相位分开讲,\(|H(j\omega)|\)称为系统的 增益 (gain),\(\sphericalangle H(j\omega)\)叫系统的 相移 (phase shift)。

将频谱的幅度、相位分开展示的坐标图(横坐标为\(\omega\))叫 模-相图 ,根据对称性,它们仅需显示正频率部分。为了展示更多的基波频率,以及在系统中经常出现\(\log_{10}\omega\),横坐标一般用对数值。另外,从图中表示相移对相位的影响是简单的,只需在相位上增加相移即可。为了让增益的影响也同样直观,一般把幅度坐标用对数表示,改乘法为加法。其实在现实中,人们对幅度的感知也是对数形式的,比如音量和功率\(\log_{10}|X|^2\)成正比。一般把\(\log_{10}|X|^2\)的单位叫做Bel,更常用的单位 分贝 (dB)是其十分之一,也即模坐标的值是\(20\log_{10}|X(j\omega)|\)。使用以上所有方法的图示称为 Bode图

7bERzmZ.jpg!web

滤波器一般通过修改幅度的方法,选择性保留部分频率的基波、而削弱其它频率的基波,增益恒为\(1\)的叫 全通系统 。根据保留频率的不同,有很多直观的术语,这里就不一一阐述了,比如 低通/高通/带通滤波 、以及 滤波的截止频率/通带/阻带 。另外,系统的相移会造成基波的时移,这在关心时移的场景里(比如图片),同样是不可忽略的影响。所有不期望发生的增益和相移,都被称为信号的 失真 。根据信号时移的性质,相同的时移\(t_0\)对应相移\(\omega t_0\),相移要和频率成正比信号才不失真,\(t_0\)称为系统的 群时延 。在一般系统的局部,也有近似的群时延\(\tau(\omega)\)(式(1))。

\[\sphericalangle H(j\omega)=\omega\cdot\tau(\omega)+\phi(\omega),\;\;\tau(\omega)=\dfrac{\text{d}[\sphericalangle H(j\omega)]}{\text{d}\,\omega}\tag{1}\]

1.2 滤波函数

理想的滤波器的系统函数只有\(0\)和\(1\)两种值,这里就举例不同场景的低通滤波,高通/带通滤波可由其转变而来。为方便叙述,先定义方波函数\(U_T(x)\),它仅在\(|x|\leqslant T\)时取\(1\)。如果设低通滤波器\(X(j\omega)\)为\(U_W(\omega)\),不难得到其单位冲激响应\(x(t)\)(式(2)左)。你可以记忆\(\text{sinc}\,\pi t\overset{F}{\leftrightarrow}U_{\pi}(\omega)\),另外在\(t=0\)处就取周边极限值。利用对偶性,就可以得到方波冲激响应的系统函数(式(2)右)。

\[\dfrac{\sin Wt}{\pi t}\;\overset{F}{\leftrightarrow}\;U_W(\omega);\;\;U_T(t)\;\overset{F}{\leftrightarrow}\;\dfrac{2\sin T\omega}{\omega}\tag{2}\]

6RfY3ai.jpg!web

如果记\(\text{sinc}(t)=\sin t/t\),则式(2)左就是\(W\text{sinc}(Wt)/\pi\)。对于比较大的\(W\),它就是\(\text{sinc}(t)\)的横向压缩以及纵向拉升,且能量都集中在原点附近。当\(W\to\infty\)时,可知左式在\(t=0\)处趋于无穷,利用三角积分的值还能算得原点附近的积分趋于\(1\)。这非常类似\(\delta(t)\),其实\(W\to\infty\)时\(U_W(\omega)\)是全通滤波,故它的单位冲激响应就是\(\delta(t)\)(即恒等变换)。同样道理,式(2)右中\(T\to\infty\)时的系统函数近似\(2\pi\delta(\omega)\),这与周期函数的FT相一致。

为讨论离散信号,对于周期\(T\),先定义周期方波\(U_{\theta}(x)\),它仅在\(|x-kT|\leqslant \theta T/2\)时为\(1\)。对离散信号的FT,设低通滤波器\(X(j\omega)\)为\(U_{\theta}(\omega)\),不难得到其单位脉冲响应\(x(t)\)(式(3)左),其中\(a_0=\theta\)。滤波\(U_{\theta}(\omega)/(2\theta\pi)\)每个周期的积分恒为\(1\),当\(\theta\to 0\)时即为单位冲激串,左边恒有极限\(1/(2\pi)\),与定值的FT一致。然后利用对偶性,也能得到周期方波的FS(式(3)右),以及单位冲激串的FS恒为\(1/T\)。最后还有离散方波的FT,以及周期离散方波的FS(式(4)),这里暂不考虑FS上的滤波。

\[\dfrac{\sin(n\theta\pi)}{n\pi}\;\overset{F}{\leftrightarrow}\;U_{\theta}(\omega);\;\;U_{\theta}(t)\;\overset{FS}{\leftrightarrow}\;\dfrac{\sin(k\theta\pi)}{k\pi}\tag{3}\]

\[U_{n_0}(n)\;\overset{F}{\leftrightarrow}\;\dfrac{\sin[\omega(n_0+1/2)]}{\sin(\omega/2)};\;\;U_{\theta}[n]\;\overset{FS}{\leftrightarrow}\;\dfrac{\sin(k\theta\pi)}{N\sin(k\pi/N)}\tag{4}\]

一个滤波器不光要考虑频域的效果,还要顾及时域带来的特性,一般用单位阶跃响应考察滤波器的时域特征。它逐步收敛于单位冲激响应的极限值,收敛过程中,有几个参数比较影响系统的好坏。首先上升到稳态的时间,表示系统响应的快慢(或当前信号对后续输出的影响大小),一般越快越好。然后还有进入稳态前的 超量 (超出稳定值)、以及进入稳态时的 震荡 ,它们都影响了系统的稳定速度,可能降低系统实时性。

式(2)左的 理想滤波 不光有超量和震荡,现实中还很难实现(不是有理系统),另外还需要整个输入信号才行(非因果系统),实际上很少使用。 非理想滤波 在通带和阻带之间没有明显的界限,而是有一定长度的 过渡带 ,并且通带/阻带上都可能有一些起伏,以此可以换来时域更好的特性。一般越小的过渡带、越小的起伏,会带来更大的超量和震荡、以及更长的上升时间,使用中需要注意平衡。更多具体的滤波要到后续课程中讨论了。

2. 采样定理

2.1 采样与插值

离散时间信号更方便处理,经常要把连续信号\(x(t)\)采样成离散序列\(x[nT]\),为此需要从理论上分析这两种信号的关系。首先自然地想把采样表示成\(x(t)s(t)\),其中\(s(t)\)仅在\(t=nT\)处有非零值\(1\),但由于\(s(t)\)没有正常的分析性质(微积分),频域分析无法进行。为此可以把\(s(t)\)换成单位冲激串函数\(p(t)\)(式(5)左),上一节已经知道它的FS频谱是\(1/T\),故它的FT频谱系数是式(5)右(\(\omega_s=2\pi/T\))。

\[p(t)=\sum_{k\in\Bbb{Z}}\delta(t-kT)\;\overset{F}{\leftrightarrow}\;P(j\omega)=\omega_s\sum_{k\in\Bbb{Z}}\delta(\omega-k\omega_s)\tag{5}\]

记采样信号为\(x_p(t)=x(t)p(t)\),根据乘法性质知其频谱系数为\(X_p(j\omega)=\dfrac{1}{2\pi}X(j\omega)*P(j\omega)\)。式(5)带入便知,\(X_p(j\omega)\)是多个\(X(j\omega)*\delta(\omega-k\omega_s)/T\)的累加,而后者是\(X(j\omega)/T\)平移\(k\omega_s\)得到,故\(X_p(\omega)\)就是\(X(j\omega)/T\)以\(\omega_s\)为周期的叠加。如果\(x(t)\)的带宽满足\(\omega_c<\omega_s\),它们在\(X_p(j\omega)\)中的叠加不会出现 混叠 ,可以用低通滤波完整截取出来。也就是说从\(x_p(t)\)中可以完全恢复出\(x(t)\),这个结论称为 采样定理

Az6RniN.jpg!web

采样定理是个理想化的模型,首先冲激串函数根本无法生成,其次理想滤波器也很难实现,但它从理论上说明了,足够密度的采样是可以保存特定信号的所有信息的。需要说明的是,带限信号往往表现出一定平滑性,但反过来平滑信号却不一定是、甚至很少是带限的(平滑不是来自低频正弦函数)。但这并不妨碍采样定理的实用性,一般信号的高频部分都足够小,高密度的采样可以获得信号的大部分信息,足以近似恢复出原信号。当\(\omega_c>\omega_s\)时,信号恢复会出现不可预知的结果,比如对信号\(\cos\omega_0 t\)低速度采样时,恢复信号的频率总会下降到\(|\omega_s-k\omega_0|\)(自行证明),这个可以解释视频中风扇倒转的现象。

现在就来讨论从采样函数\(x_p(t)\)恢复出\(x(t)\)的一般性方法,这里\(x_p(t)\)是个数学工具,它代表了采样信息\(x[nT]\)。记恢复系统的单位冲激响应为\(h(t)\),则恢复信号\(x_r(t)\)为式(6)。不难看出,满足\(h(0)=1,h(nT)=0,(n\ne 0)\)的系统都能准确恢复出采样值\(x[nT]\),这时的\(x_r(t)\)就好像\(x[nT]\)的内插函数。采样定理中的低通方波就满足 插值 条件,其它恢复信号的插值法也要满足插值条件,而且在频谱上都是低通方波的一种近似,即便只是粗略的近似。

\[x_r(t)=x_p(t)*h(t)=\sum_{n\in\Bbb{Z}}x(nT)h(t-nT)\tag{6}\]

把式(6)看成\(x(nT)\)影响的叠加,选择适当的\(h(t)\)便可以构造不同的恢复系统。比如记\(h_0(t)\)仅在\([0,T)\)上有非零值\(1\),这时\(x_r(t)\)在\([nT,(n+1)T)\)上的值都是\(x(nT)\),这样的阶梯函数叫采样的 零阶保持 。为了让恢复信号连续,最简单的就是线性插值(相邻两点直线相连,也叫 一阶保持 ),不难得知\(h(t)\)是一个\((-T,T)\)上面的三角形函数。类似地可以有更平滑的高阶保持,那里\(h(t)\)要更平滑,每个点的影响范围也更大。

63QJJvn.jpg!web

2.2 数模转换

连续信号(也叫模拟信号(analog))离散化的优点并不仅限于存储和传输,数字(digital)信号的在处理上有更多有效便捷的方法。所以经常会把模拟信号先做个 模-数转换(A/D) ,通过 数字信号处理(DSP) 后,再进行 数-模转换(D/A) 输出模拟信号。在这个过程中,要想使用统一的FT理论就非常困难了,而不得不直接寻找连续FT和离散FT之间的关系,也即冲激采样\(x_p(t)\)能否由脉冲采样\(x_d[n]=x[nT]\)替代。

把\(x_p(t)\)看成冲激串的叠加,并根据\(\delta(t-nT)\)的(连续FT)频谱,可得到\(x_p(t)\)的频谱为式(7)左。然后直接用离散FT的公式,可得到\(x_d[n]\)的频谱为式(7)右,这里的\(X_d(e^{j\omega})\)已经展开为周期函数。这两个频谱系数虽然来自不同的变换,但却有式(8)左的联系,\(X_d(e^{j\omega})\)是\(X_p(j\omega)\)在横轴拉升\(T\)倍,使周期成为\(2\pi\)。这个结论不仅说明了\(x_p(t)\)和\(x_d[n]\)在信息量上的等价性,还是连续频谱和离散频谱之间的桥梁。

\[X_p(j\omega)=\sum_{n\in\Bbb{Z}}x(nT)e^{-j\omega nT};\;\;X_d(j\omega)=\sum_{n\in\Bbb{Z}}x(nT)e^{-j\omega n}\tag{7}\]

\[X_p(j\omega/T)=X_d(e^{j\omega});\;\;H(j\omega)=H_d(e^{j\omega T}),\,(|\omega|<\omega_p/2)\tag{8}\]

假设\(x_d[n]\)经过系统\(H_d(e^{j\omega})\)后变成\(y_d[n]\),再把它冲激采样化为\(y_p(t)\),不难求得最后的频谱是\(Y_p(j\omega)=X_p(j\omega)H_d(e^{j\omega T})\),这就好比\(x_p(t)\)通过了连续系统\(H_d(e^{j\omega T})\)。如果回到连续函数,相当于\(x(t)\)经过连续系统\(H(j\omega)\)(式(8)右)后变成了\(y(t)\),这就说明了数字信号处理对连续系统的影响。当然还要强调一下,要想\(H(j\omega)\)等价于原离散系统,还要求\(x(t)\)是带限的(否则只是近似系统)。更进一步讲,带限连续信号脉冲采样并通过离散LIT系统后,就相当于通过了一个连续LIT系统。

这个结论其实更适合反过来用,由于连续信号有更好的分析性质,那些在离散信号上“无意义”的概念(比如微分),可以先在连续信号上设计系统,再通过式(8)得到对应的离散系统。比如连续信号的微分器是\(H(j\omega)=j\omega\),那么其采样信号的微分器\(H_d(e^{j\omega})\)就是\(j\omega/T\)在\(|\omega|<\pi\)上的周期拓展。再比如时移系统的微分器是\(e^{-j\omega t_0}\),其采样信号的微分器就是\(e^{-j\omega t_0/T}\)在\(|\omega|<\pi\)上的周期拓展。它们的单位脉冲响应可以用逆变换计算,也可以通过特殊信号的响应直接求得。函数\(\text{sinc}(\pi t)\)在整数点上的采样就是单位脉冲(注意此时\(T=1\)),且带宽\(2\pi=\omega_s\)刚好没有混叠,对它做变换(比如微分、时移)再在整数点采样,即可得到离散系统的单位脉冲响应。

2.3 抽取和内插

对于高频采样的信号,实际使用时往往不需要这么高的精度,或者数据量相对信息量是有冗余的,这时就需要考虑离散信号的 抽取减采样 )。记脉冲串\(p[n]\)仅在\(n=kN\)时有非零值\(1\),易知它的频谱系数为式(9),其中\(\omega_s=2\pi/N\)。同样用周期卷积分析\(x_p[n]=x[n]p[n]\)的频谱,它是\(X(e^{j\omega})/N\)以\(\omega_s\)为周期的叠加,\(2\pi\)内共有\(N\)个。当\(x[n]\)的带宽满足\(\omega_c<\omega_s\)时,从\(x_p[n]\)可以完全恢复出\(x[n]\)。以及把抽取值重组为信号\(x_b[n]=x_p[nN]\),根据缩放性质可有关系式\(X_b(e^{j\omega})=X_p(e^{j\omega/N})\),两者在信息量上是等价的。

\[p[n]=\sum_{k\in\Bbb{Z}}\delta[n-kN]\;\overset{F}{\leftrightarrow}\;P(e^{j\omega})=\omega_s\sum_{k\in\Bbb{Z}}\delta(\omega-k\omega_s)\tag{9}\]

对比\(x[n]\)和\(x_b[n]\)的频谱,后者相当于前者在每个\(2\pi\)内拉伸\(N\)倍(同时幅值降低到\(1/N\))。以上过程的逆过程,即先拉升补零再方波截取,可以看成是把\(x_b[n]\) 内插增采样 )成\(x[n]\),同时频谱收缩\(N\)倍。我们希望减采样的频谱能正好填满周期\(2\pi\),以充分利用频谱而降低采样数据量,这个过程往往需要先增采样,以使\(2\pi/\omega_c\)尽量接近整数。另外,缩放的过程也许可以更直观地解释式(5)和(9),\(x_b[n]\)完整拥有\(x[n]\)的频谱,\(x_p[n]\)本质上是个延展函数,延展过程中其它周期的频谱都被压缩至\(2\pi\)内。式(9)则可以解释成,无穷处的频谱被压缩至实轴内了。

3. 通信系统

3.1 基本概念

现代通讯是以电磁波为信息载体的,在空气中波长越长(频率越低),无线电波的传播距离越远(速度同光速);而高频部分带宽更宽,可以容纳更多的信息。在工业上,长波(0~300kHz)可传播国际广播,中波(300k~3MHz)多用于AM,短波(3m~300MHz)多用于高保真传输(比如FM广播、手机通讯、Wifi等)。各种不同的信号想要通过电磁波传输,就必须把信息“嵌入”到一个高频信号中,前者称为 调制信号 、后者称为 载波信号 ,嵌入和解析信号的方法分别叫 调制解调

NZ7F7zJ.jpg!web

载波信号多为正弦波,根据载波被修改的内容,调制方法和大致分为 幅度调制AM )和 频率调制FM )。频率调制直接修改载波的频率\(\omega_c\)(式(10)),由于FM使用的高频,局部的频率\(\omega_c+kx(t)\)近乎不变,可由此解调出\(x(t)\)。频率几乎不会衰减,因此FM可以高保真传输信息,缺点则是需要占用较大的带宽。幸好高频的带宽足够宽,甚至可以划分为多个频段,以供多路FM信号传输,这个方法就叫 频分多路复用FDM )。

\[A\cos\theta(t),\;\;\dfrac{\text{d}\theta(t)}{\text{d}t}=\omega_c+kx(t)\tag{10}\]

幅度调制直接把调制波乘上载波,周期载波的频谱是可数个冲激串,根据乘法性质可知,调制后的频谱是原频谱的平移叠加,可使用带通滤波解调出来。一类常用的AM载波是周期方波,方波无需持续很久、而只要频率够高,即可传输近似的信号。效果相当于是高频、有短暂持续的采样,也被叫做 脉冲幅度调制PAM )。另外可想而知,一个采样周期内可以有多路信号并存,这个方法就叫 时分多路复用TDM )。

值得注意的是,PAM所使用的方波载波,其频谱是无限的,在传输中必定会失真。而失真的信号在TDM中会造成 码间干扰 ,导致所有信号都变形。为此PAM的载波要选择特殊的周期脉冲,它是带限的、并在其它通道时间上还是过零的。为讨论方便,把PAM的时隙设为\(1\),脉冲\(p(t)\)要在\(k\ne 0\)上过零,即频谱\(P(j\omega)\)有界且\(P(j\omega)e^{-jk\omega}\)的积分为零。假定脉冲对称、并利用三角函数的性质,可以构造如式(11)的频谱函数,其中最有代表性的是方波\(U_{\pi}(\omega)\),它的脉冲函数是\(\text{sinc}\,\pi t\)。当然如果把脉冲数据都数字化(二进制),也就没有码间干扰的问题了,它被称为 脉冲编码调制PCM )。

\[P(j\omega)=P(-j\omega);\;\;P(j\omega)+P(j(2\pi-\omega))=1,\;(0\leqslant\omega\leqslant\pi)\tag{11}\]

VFn6NjM.jpg!web

3.2 正弦幅度调制

幅度调制更常用的载波还是正弦函数,它更易于产生,也有更好的分析性质和频谱系数。AM的主要目的是要把信号嵌入到某个传输频段,比较自然地可以想到频域的平移性质,即如式(12)用复载波\(e^{j\omega_c t}\)将\(X(j\omega)\)整体右移\(\omega_c\)。在接收端,只需用复载波\(e^{-j\omega_c t}\)即可解调出\(x(t)\),复载波可以用两路信号\(x(t)\cos\omega_c t\)和\(x(t)\sin\omega_c t\)来表示。如果只想使用单通道也是可以的,式(13)表明载波\(\cos\omega_c t\)将\(X(j\omega)\)产生了两份叠加。接收端如果还用\(\cos\omega_c t\)解调,便可以得到右图中的三份频谱,使用低通滤波器即可保留单个\(x(t)\)的频谱。

\[x(t)e^{j\omega_c t}\;\overset{F}{\leftrightarrow}\;X(j(\omega-\omega_c))\tag{12}\]

\[x(t)\cos\omega_c t\;\overset{F}{\leftrightarrow}\;\dfrac{1}{2}[X(j(\omega-\omega_c))+X(j(\omega+\omega_c))]\tag{13}\]

nY3eEji.jpg!web

在实现中还有一个棘手的问题需要解决,即调制载波和解调载波(不论是单双通道)需要是同相的,这称为 同步解调 ,需要较高的成本。而现实中两者往往有相位差\(\phi(t)\),并且随时间不稳定地变化。如果使用的是复载波,解调出来的信号其实是\(x(t)e^{j\phi}\),在\(x(t)\)恒为正的情况下,取其范数即可得到\(x(t)\)。为了让调制波恒为正,有时需要将波幅同步提升,这将带来额外的功率消耗。如果使用的是正弦载波,解调的信号将是\(x(t)\cos\phi t\),好像无计可施了。其实如果\(x(t)\)恒为正、且\(\omega_c\)足够大,\(x(t)\cos\omega_c t\)的所有波峰就好像是对\(x(t)\)的采样(使用 包络检测器 ),从它们也可以恢复出\(x(t)\)的近似值。

正弦载波调制占用了\(x(t)\)两倍量的带宽,这对有限的带宽是一种浪费,它称为 双边带调制DSB )。\(x(t)\)的频谱按\(\omega\)的正负分为两个 边带 ,调制后靠近原点的两个分支叫下边带(否则叫上边带),仅保留上/下边带的调制称为 单边带调制SSB )。SSB需要用理想带通滤波实现,我们知道这个难以实现。其实利用两个频谱分支的平移对称性、以及三角函数的对称性,可以设计出式(14)的调制系统( 90度相移网络 ),请自行证明它仅保留了上边带(以及设计保留下边带的系统)。

\[x(t)\cos\omega_c t+x_h(t)\sin\omega_c t,\;\;x_h(t)\;\overset{F}{\leftrightarrow}\;jX(j\omega)\cdot\text{sign}\omega\tag{14}\]

离散信号的幅度调制非常类似,可以用复载波\(e^{j\omega_c n}\)将频谱移向高频,然后用\(e^{-j\omega_c n}\)解调。如果用正弦函数调制,也会产生正负两个频谱分支,这时需要防止不同周期上频谱的混叠。记信号带宽为\(\omega_m\),首先要让两个分支分开,即要\(\omega_c>\omega_m/2\);然后周期间也不能混叠,即要\(\omega_c+\omega_m/2<\pi\)。综合便要求式(15)成立,这就要求\(\omega_m\)越小越好。其实在之前的采样理论中我们知道,只要对信号增采样,即可压缩信号的频谱。

\[\omega_m<2\omega_c<2\pi-\omega_m\tag{15}\]


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK