18

Github GitHub - mrdbourke/tensorflow-deep-learning: All course materials for the...

 3 years ago
source link: https://github.com/mrdbourke/tensorflow-deep-learning
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.

Zero to Mastery Deep Learning with TensorFlow

rocketUpdate (29 April 2021): The ZTM Deep Learning with TensorFlow course is now live on Udemy! There's a special deal going for the next ~5 days or so to celebrate the launch, sign up to lock in the best price!

All of the course materials for the Zero to Mastery Deep Learning with TensorFlow course.

This course will teach you foundations of deep learning and TensorFlow as well as prepare you to pass the TensorFlow Developer Certification exam (optional).

Before signing up to the full course, you can watch the first 14-hours of videos on YouTube in a two part series:

  • Part 1 contains notebooks 00, 01 and some of 02 (see below)
  • Part 2 starts where part 1 left off and finishes the rest of 02

Videos going through the rest of the notebooks (03 - 10) are available in the full course.

Contents of this page

Course materials

This table is the ground truth for course materials. All the links you need for everything will be here.

  • Number: The number of the target notebook (this may not match the video section of the course but it ties together all of the materials in the table)
  • Notebook: The notebook for a particular module with lots of code and text annotations (notebooks from the videos are based on these)
  • Data/model: Links to datasets/pre-trained models for the assosciated notebook
  • Exercises & Extra-curriculum: Each module comes with a set of exercises and extra-curriculum to help practice your skills and learn more, I suggest going through these before you move onto the next module
  • Slides: Although we focus on writing TensorFlow code, we sometimes use pretty slides to describe different concepts, you'll find them here

Note: You can get all of the notebook code created during the videos in the video_notebooks directory.

Course structure

This course is code first. The goal is to get you writing deep learning code as soon as possible.

It is taught with the following mantra:

Code -> Concept -> Code -> Concept -> Code -> Concept

This means we write code first then step through the concepts behind it.

If you've got 6-months experience writing Python code and a willingness to learn (most important), you'll be able to do the course.

Should you do this course?

Do you have 1+ years experience with deep learning and writing TensorFlow code?

If yes, no you shouldn't, use your skills to build something.

If no, move onto the next question.

Have you done at least one beginner machine learning course and would like to learn about deep learning/pass the TensorFlow Developer Certification?

If yes, this course is for you.

If no, go and do a beginner machine learning course and if you decide you want to learn TensorFlow, this page will still be here.

Prerequisites

What do I need to know to go through this course?

  • 6+ months writing Python code. Can you write a Python function which accepts and uses parameters? That’s good enough. If you don’t know what that means, spend another month or two writing Python code and then come back here.
  • At least one beginner machine learning course. Are you familiar with the idea of training, validation and test sets? Do you know what supervised learning is? Have you used pandas, NumPy or Matplotlib before? If no to any of these, I’d going through at least one machine learning course which teaches these first and then coming back.
  • Comfortable using Google Colab/Jupyter Notebooks. This course uses Google Colab throughout. If you have never used Google Colab before, it works very similar to Jupyter Notebooks with a few extra features. If you’re not familiar with Google Colab notebooks, I’d suggest going through the Introduction to Google Colab notebook.
  • Plug: The Zero to Mastery beginner-friendly machine learning course (I also teach this) teaches all of the above (and this course is designed as a follow on).

hammer_and_wrench Exercises & book Extra-curriculum

To prevent the course from being 100+ hours (deep learning is a broad field), various external resources for different sections are recommended to puruse under your own discrestion.

(solutions to come after the course is released... try the exercises out for yourself first!)


hammer_and_wrench 00 TensorFlow Fundamentals Exercises

  1. Create a vector, scalar, matrix and tensor with values of your choosing using tf.constant().
  2. Find the shape, rank and size of the tensors you created in 1.
  3. Create two tensors containing random values between 0 and 1 with shape [5, 300].
  4. Multiply the two tensors you created in 3 using matrix multiplication.
  5. Multiply the two tensors you created in 3 using dot product.
  6. Create a tensor with random values between 0 and 1 with shape [224, 224, 3].
  7. Find the min and max values of the tensor you created in 6.
  8. Created a tensor with random values of shape [1, 224, 224, 3] then squeeze it to change the shape to [224, 224, 3].
  9. Create a tensor with shape [10] using your own choice of values, then find the index which has the maximum value.
  10. One-hot encode the tensor you created in 9.

book 00 TensorFlow Fundamentals Extra-curriculum

  • Read through the list of TensorFlow Python APIs, pick one we haven't gone through in this notebook, reverse engineer it (write out the documentation code for yourself) and figure out what it does.
  • Try to create a series of tensor functions to calculate your most recent grocery bill (it's okay if you don't use the names of the items, just the price in numerical form).
    • How would you calculate your grocery bill for the month and for the year using tensors?
  • Go through the TensorFlow 2.x quick start for beginners tutorial (be sure to type out all of the code yourself, even if you don't understand it).
    • Are there any functions we used in here that match what's used in there? Which are the same? Which haven't you seen before?
  • Watch the video "What's a tensor?" - a great visual introduction to many of the concepts we've covered in this notebook.

hammer_and_wrench 01 Neural network regression with TensorFlow Exercises

  1. Create your own regression dataset (or make the one we created in "Create data to view and fit" bigger) and build fit a model to it.
  2. Try building a neural network with 4 Dense layers and fitting it to your own regression dataset, how does it perform?
  3. Try and improve the results we got on the insurance dataset, some things you might want to try include:
  • Building a larger model (how does one with 4 dense layers go?).
  • Increasing the number of units in each layer.
  • Lookup the documentation of Adam and find out what the first parameter is, what happens if you increase it by 10x?
  • What happens if you train for longer (say 300 epochs instead of 200)?

book 01 Neural network regression with TensorFlow Extra-curriculum


hammer_and_wrench 02 Neural network classification with TensorFlow Exercises

  1. Play with neural networks in the TensorFlow Playground for 10-minutes. Especially try different values of the learning, what happens when you decrease it? What happens when you increase it?
  2. Replicate the model pictured in the TensorFlow Playground diagram below using TensorFlow code. Compile it using the Adam optimizer, binary crossentropy loss and accuracy metric. Once it's compiled check a summary of the model.

    Try this network out for yourself on the TensorFlow Playground website. Hint: there are 5 hidden layers but the output layer isn't pictured, you'll have to decide what the output layer should be based on the input data.

  3. Create a classification dataset using Scikit-Learn's make_moons() function, visualize it and then build a model to fit it at over 85% accuracy.
  4. Create a function (or write code) to visualize multiple image predictions for the fashion MNIST at the same time. Plot at least three different images and their prediciton labels at the same time. Hint: see the classifcation tutorial in the TensorFlow documentation for ideas.
  5. Recreate TensorFlow's softmax activation function in your own code. Make sure it can accept a tensor and return that tensor after having the softmax function applied to it.
  6. Train a model to get 88%+ accuracy on the fashion MNIST test set. Plot a confusion matrix to see the results after.
  7. Make a function to show an image of a certain class of the fashion MNIST dataset and make a prediction on it. For example, plot 3 images of the T-shirt class with their predictions.

book 02 Neural network classification with TensorFlow Extra-curriculum


hammer_and_wrench 03 Computer vision & convolutional neural networks in TensorFlow Exercises

  1. Spend 20-minutes reading and interacting with the CNN explainer website.
  • What are the key terms? e.g. explain convolution in your own words, pooling in your own words
  1. Play around with the "understanding hyperparameters" section in the CNN explainer website for 10-minutes.
  • What is the kernel size?
  • What is the stride?
  • How could you adjust each of these in TensorFlow code?
  1. Take 10 photos of two different things and build your own CNN image classifier using the techniques we've built here.
  2. Find an ideal learning rate for a simple convolutional neural network model on your the 10 class dataset.

book 03 Computer vision & convolutional neural networks in TensorFlow Extra-curriculum


hammer_and_wrench 04 Transfer Learning in TensorFlow Part 1: Feature Extraction Exercises

  1. Build and fit a model using the same data we have here but with the MobileNetV2 architecture feature extraction (mobilenet_v2_100_224/feature_vector) from TensorFlow Hub, how does it perform compared to our other models?
  2. Name 3 different image classification models on TensorFlow Hub that we haven't used.
  3. Build a model to classify images of two different things you've taken photos of.
  • You can use any feature extraction layer from TensorFlow Hub you like for this.
  • You should aim to have at least 10 images of each class, for example to build a fridge versus oven classifier, you'll want 10 images of fridges and 10 images of ovens.
  1. What is the current best performing model on ImageNet?

book 04 Transfer Learning in TensorFlow Part 1: Feature Extraction Extra-curriculum


hammer_and_wrench 05 Transfer Learning in TensorFlow Part 2: Fine-tuning Exercises

  1. Write a function to visualize an image from any dataset (train or test file) and any class (e.g. "steak", "pizza"... etc), visualize it and make a prediction on it using a trained model.
  2. Use feature-extraction to train a transfer learning model on 10% of the Food Vision data for 10 epochs using tf.keras.applications.EfficientNetB0 as the base model. Use the ModelCheckpoint callback to save the weights to file.
  3. Fine-tune the last 20 layers of the base model you trained in 2 for another 10 epochs. How did it go?
  4. Fine-tune the last 30 layers of the base model you trained in 2 for another 10 epochs. How did it go?

book 05 Transfer Learning in TensorFlow Part 2: Fine-tuning Extra-curriculum

  • Read the documentation on data augmentation in TensorFlow.
  • Read the ULMFit paper (technical) for an introduction to the concept of freezing and unfreezing different layers.
  • Read up on learning rate scheduling (there's a TensorFlow callback for this), how could this influence our model training?
    • If you're training for longer, you probably want to reduce the learning rate as you go... the closer you get to the bottom of the hill, the smaller steps you want to take. Imagine it like finding a coin at the bottom of your couch. In the beginning your arm movements are going to be large and the closer you get, the smaller your movements become.

hammer_and_wrench 06 Transfer Learning in TensorFlow Part 3: Scaling-up Exercises

  1. Take 3 of your own photos of food and use the trained model to make predictions on them, share your predictions with the other students in Discord and show off your Food Vision model hamburgereye.
  2. Train a feature-extraction transfer learning model for 10 epochs on the same data and compare its performance versus a model which used feature extraction for 5 epochs and fine-tuning for 5 epochs (like we've used in this notebook). Which method is better?
  3. Recreate the first model (the feature extraction model) with mixed_precision turned on.
  • Does it make the model train faster?
  • Does it effect the accuracy or performance of our model?
  • What's the advatanges of using mixed_precision training?

book 06 Transfer Learning in TensorFlow Part 3: Scaling-up Extra-curriculum

  • Spend 15-minutes reading up on the EarlyStopping callback. What does it do? How could we use it in our model training?
  • Spend an hour reading about Streamlit. What does it do? How might you integrate some of the things we've done in this notebook in a Streamlit app?

hammer_and_wrench 07 Milestone Project 1: hamburgereye Food Vision Big™ Exercises

Note: The chief exercise for Milestone Project 1 is to finish the "TODO" sections in the Milestone Project 1 Template notebook. After doing so, move onto the following.

  1. Use the same evaluation techniques on the large-scale Food Vision model as you did in the previous notebook (Transfer Learning Part 3: Scaling up). More specifically, it would be good to see:
  • A confusion matrix between all of the model's predictions and true labels.
  • A graph showing the f1-scores of each class.
  • A visualization of the model making predictions on various images and comparing the predictions to the ground truth.
    • For example, plot a sample image from the test dataset and have the title of the plot show the prediction, the prediction probability and the ground truth label.
  1. Take 3 of your own photos of food and use the Food Vision model to make predictions on them. How does it go? Share your images/predictions with the other students.
  2. Retrain the model (feature extraction and fine-tuning) we trained in this notebook, except this time use EfficientNetB4 as the base model instead of EfficientNetB0. Do you notice an improvement in performance? Does it take longer to train? Are there any tradeoffs to consider?
  3. Name one important benefit of mixed precision training, how does this benefit take place?

book 07 Milestone Project 1: hamburgereye Food Vision Big™ Extra-curriculum


hammer_and_wrench 08 Introduction to NLP (Natural Language Processing) in TensorFlow Exercises

  1. Rebuild, compile and train model_1, model_2 and model_5 using the Keras Sequential API instead of the Functional API.
  2. Retrain the baseline model with 10% of the training data. How does perform compared to the Universal Sentence Encoder model with 10% of the training data?
  3. Try fine-tuning the TF Hub Universal Sentence Encoder model by setting training=True when instantiating it as a Keras layer.
# We can use this encoding layer in place of our text_vectorizer and embedding layer
sentence_encoder_layer = hub.KerasLayer("https://tfhub.dev/google/universal-sentence-encoder/4",
                                        input_shape=[],
                                        dtype=tf.string,
                                        trainable=True) # turn training on to fine-tune the TensorFlow Hub model
  1. Retrain the best model you've got so far on the whole training set (no validation split). Then use this trained model to make predictions on the test dataset and format the predictions into the same format as the sample_submission.csv file from Kaggle (see the Files tab in Colab for what the sample_submission.csv file looks like). Once you've done this, make a submission to the Kaggle competition, how did your model perform?
  2. Combine the ensemble predictions using the majority vote (mode), how does this perform compare to averaging the prediction probabilities of each model?
  3. Make a confusion matrix with the best performing model's predictions on the validation set and the validation ground truth labels.

book 08 Introduction to NLP (Natural Language Processing) in TensorFlow Extra-curriculum

To practice what you've learned, a good idea would be to spend an hour on 3 of the following (3-hours total, you could through them all if you want) and then write a blog post about what you've learned.

  • For an overview of the different problems within NLP and how to solve them read through:

  • Go through MIT's Recurrent Neural Networks lecture. This will be one of the greatest additions to what's happening behind the RNN model's you've been building.
  • Read through the word embeddings page on the TensorFlow website. Embeddings are such a large part of NLP. We've covered them throughout this notebook but extra practice would be well worth it. A good exercise would be to write out all the code in the guide in a new notebook.
  • For more on RNN's in TensorFlow, read and reproduce the TensorFlow RNN guide. We've covered many of the concepts in this guide, but it's worth writing the code again for yourself.
  • Text data doesn't always come in a nice package like the data we've downloaded. So if you're after more on preparing different text sources for being with your TensorFlow deep learning models, it's worth checking out the following:

  • This notebook has focused on writing NLP code. For a mathematically rich overview of how NLP with Deep Learning happens, read Standford's Natural Language Processing with Deep Learning lecture notes Part 1.
    • For an even deeper dive, you could even do the whole CS224n (Natural Language Processing with Deep Learning) course.
  • Great blog posts to read:
  • Other topics worth looking into:

hammer_and_wrench 09 Milestone Project 2: SkimLit page_facing_upfire Exercises

  1. Train model_5 on all of the data in the training dataset for as many epochs until it stops improving. Since this might take a while, you might want to use:
  1. Checkout the Keras guide on using pretrained GloVe embeddings. Can you get this working with one of our models?
  • Hint: You'll want to incorporate it with a custom token Embedding layer.
  • It's up to you whether or not you fine-tune the GloVe embeddings or leave them frozen.
  1. Try replacing the TensorFlow Hub Universal Sentence Encoder pretrained embedding for the TensorFlow Hub BERT PubMed expert (a language model pretrained on PubMed texts) pretrained embedding. Does this effect results?
  1. What happens if you were to merge our line_number and total_lines features for each sequence? For example, created a X_of_Y feature instead? Does this effect model performance?
  • Another example: line_number=1 and total_lines=11 turns into line_of_X=1_of_11.
  1. Write a function (or series of functions) to take a sample abstract string, preprocess it (in the same way our model has been trained), make a prediction on each sequence in the abstract and return the abstract in the format:

book 09 Milestone Project 2: SkimLit page_facing_upfire Extra-curriculum

What this course is missing

Deep learning is a broad topic. So this course doesn't cover it all.

Here are some of the main topics you might want to look into next:

  • Transformers (the neural network architecture taking the NLP world by storm)
  • Multi-modal models (models which use more than one data source such as text & images)
  • Reinforcement learning
  • Unsupervised learning

Extensions (possible places to go after the course)

Ask questions

Contact Daniel Bourke or add a discussion (preferred).

Status

As of: 03 May 2021 - LAUNCHED ON ZTM & Udemy!!! Found an issue with videos in section 08 (no audio), rerecording them

geez... I forgot how much there was still to go... classic project planning

  • white_check_mark Make a GitHub Project for course (see "Projects" tab)
  • white_check_mark Make a GitHub Discussions for course (thank you Alvaro)
  • white_check_mark Polish GitHub readme (what you're reading now) with extra resources:
    • data links used in course
    • extra resources & curriculum
  • soon Upload slides for each section, done for: 00, 01, 02, 03, 04, 05, 06, 07, 08, 09 (see course materials)
  • soon Upload video notebooks for each section, done for: 00, 01, 02, 03, 04, 05, 06, 07, 08, 09 (see .video_notebooks/)
  • Make Colab overview video (Colab is the tool we'll be using for the whole course)
  • Make course resource overview video (e.g. how to use this GitHub, Discussions page, exercises, extra-curriculum etc)
  • Upload solutions for exercises (probably livestream the creation of these after course launch)
  • 03 May 2021 - found an issue with videos 09-20 of section 08 (no audio), going to rerecord them
  • 29 Apr 2021 - rocketrocketrocket launched on Udemy!!! rocketrocketrocket
  • 22 Apr 2021 - finished recording videos for 09! added slides and video notebook 09
  • 21 Apr 2021 - recorded 14 videos for 09! biggggg day of recording! getting closer to finishing 09
  • 20 Apr 2021 - recorded 10 videos for 09
  • 19 Apr 2021 - recorded 9 videos for 09
  • 16 Apr 2021 - slides done for 09, ready to start recording!
  • 15 Apr 2021 - added slides, extra-curriculum, exercises and video notebook for 08, started making slides for 09, will finish tomorrow
  • 14 Apr 2021 - recorded 12 videos for notebook 08, finished the section! time to make slides for 09 and get into it
  • 10 Apr 2021 - recorded 4 videos for notebook 08
  • 9 Apr 2021 - recorded 6 videos for notebook 08
  • 8 Apr 2021 - recorded 10 videos for notebook 08! more coming tomorrow! home stretch baby!!!
  • 7 Apr 2021 - added a whole bunch of images to notebook 08, getting ready for recording tomorrow!
  • 1 Apr 2021 - added notebook 09: SkimLit, almost finished, a little cleaning and we'll be ready for slide making!
  • 31 Mar 2021 - added notebook 08, going to finish tomorrow, then onto 09!
  • 24 Mar 2021 - Recorded 8 videos for 07, finished! onto materials (slides/notebooks) for 08, 09
  • 23 Mar 2021 - Recorded 6 videos for 07 (finally), going to finish tomorrow
  • 22 Mar 2021 - Polished notebook 07 ready for recording, made slides for 07, added template for 07 (for a student to go through and practice), ready to record!
  • 17 Mar 2021 - 99% finished notebook 07, added links to first 14 hours of the course on YouTube (10 hours in part 1, 4 hours in part 2)
  • 11 Mar 2021 - added even more text annotations to notebook 07, finishing tomorrow, then slides
  • 10 Mar 2021 - Typed a whole bunch of explanations into notebook 07, continuing tomorrow
  • 09 Mar 2021 - fixed plenty of code in notebook 07, should run end to end very cleanly (though loading times are still a thing)
  • 05 Mar 2021 - added draft notebook 07 (heaps of data loading and model training improvements in this one!), gonna fix up over next few days
  • 01 Mar 2021 - Added slides for 06 (see them here)
  • 26 Feb 2021 - rocket LAUNCHED!!!!! also finished recording videos for 06, onto 07, 08, 09 for next release
  • 24 Feb 2021 - recorded 9 videos for section 06, launch inbound!!!
  • 23 Feb 2021 - rearranged GitHub in preparation for launch rocket
  • 18 Feb 2021 - recorded 8 videos for 05 and... it's done! onto polishing the GitHub
  • 17 Feb 2021 - recorded 10 videos for 05! going to finish tomorrow rocket
  • 16 Feb 2021 - polished slides for 05 and started recording videos, got 7 videos done for 05
  • 15 Feb 2021 - finished videos for 04, now preparing to record for 05!
  • 12 Feb 2021 - recored 7 videos for section 04... wanted 10 but we'll take 7 (thinking this seems to have happened before)
  • 11 Feb 2021 - NO PROGRESS - gave a Machine Learning deployment tutorial for Stanford's CS329s (using the model code from this course!!!) - see the full tutorial materials
  • 08 Feb 2021 - recorded 10 videos for section 03... and section 03 is done! rocket onto section 04
  • 30 Jan 2021 - 07 Feb 2021: NO PROGRESS (working on a ML deployment lecture for Stanford's CS329s... more on this later)
  • 29 Jan 2021 - recorded 9 videos for section 03... closer to 10 than yesterday but still not there
  • 28 Jan 2021 - recorded 7 videos for section 03... wanted 10 but we'll take 7
  • 27 Jan 2021 - recorded 10 videos for section 03
  • 26 Jan 2021 - polished GitHub README (what you're looking at) with a nice table
  • 23 Jan 2021 - finished slides of 06
  • 22 Jan 2021 - finished review of notebook 06 & started slides of 06
  • 21 Jan 2021 - finished slides for 05 & started review of 06
  • 20 Jan 2021 - finished notebook 05 & 95% slides for 05
  • 19 Jan 2021 - found a storage idea for data during course (use Google Storage in same region as Colab Notebooks, cheapest/fastest)
  • 18 Jan 2021 - reviewed notebook 05 & slides for 05
  • 17 Jan 2021 - finished notebook 04 & slides for 04
  • 16 Jan 2021 - review notebook 04 & made slides for transfer learning
  • 13 Jan 2021 - review notebook 03 again & finished slides for 03, BIGGGGG updates to the README, notebook 03 99% done, just need to figure out optimum way to transfer data (e.g. when a student downloads it, where's best to store it in the meantime? Dropbox? S3? GS (too expensive)
  • 11 Jan 2021 - reviewed notebook 03, 95% ready for recording, onto slides for 03
  • 9 Jan 2021 - I'm back baby! Finished all videos for 02, now onto slides/materials for 03, 04, 05 (then I'll get back in the lab)
  • 19 Dec 2020 - ON HOLD (family holiday until Jan 02 2021)
  • 18 Dec 2020 - recorded 75% of videos for 02
  • 17 Dec 2020 - recorded 50% of videos for 02
  • 16 Dec 2020 - recorded 100% of videos for 01
  • 15 Dec 2020 - recorded 90% of videos for 01
  • 09 Dec 2020 - finished recording videos for 00
  • 08 Dec 2020 - recorded 90% of videos for 00
  • 05 Dec 2020 - trialled recording studio for ~6 videos with notebook 00 material
  • 04 Dec 2020 - setup recording studio in closet
  • 03 Dec 2020 - finished notebook 02, finished slides for 02, time to setup recording studio
  • 02 Dec 2020 - notebook 02 95% done, slides for 02 90% done
  • 01 Dec 2020 - added notebook 02 (90% polished), start preparing slides for 02
  • 27 Nov 2020 - polished notebook 01, made slides for notebook 01
  • 26 Nov 2020 - polished notebook 00, made slides for notebook 00

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK